Advertisement for orthosearch.org.uk
Results 1 - 19 of 19
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 595 - 601
1 Apr 2010
Kafchitsas K Kokkinakis M Habermann B Rauschmann M

In a study on ten fresh human cadavers we examined the change in the height of the intervertebral disc space, the angle of lordosis and the geometry of the facet joints after insertion of intervertebral total disc replacements. SB III Charité prostheses were inserted at L3-4, L4-5, and L5-S1. The changes studied were measured using computer navigation sofware applied to CT scans before and after instrumentation. After disc replacement the mean lumbar disc height was doubled (p < 0.001). The mean angle of lordosis and the facet joint space increased by a statistically significant extent (p < 0.005 and p = 0.006, respectively). By contrast, the mean facet joint overlap was significantly reduced (p < 0.001). Our study indicates that the increase in the intervertebral disc height after disc replacement changes the geometry at the facet joints. This may have clinical relevance


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 9 - 9
1 Jan 2013
Al-Najjim M Fenton C
Full Access

Aims. A systematic review of the available literature comparing the outcomes of radiofrequency denervation to sham procedure in treating chronic low back pain caused by lumber zygapophysial joint pathology. Methods. Medline and EMBASE databases were searched for English language articles from 2005 to July 2010. Articles were considered for review if they satisfied the inclusion criteria: Randomised Controlled Trials(RCT) comparing radiofrequency neurotomy(RFN) to a ‘placebo’ procedure in patients with chronic low back pain caused by facet joint osteoarthritis. Adult patients of both sexes above 17 years of age who complained of continuous low back pain for more than 6 months with focal tenderness over the facet joints. Outcome measures of interest are pain improvement, physical activity, analgesic use, quality of life variables, range of motion of the lumbar spine and hip movement. Critical appraisal of the selected studies was carried out using the CASP appraisal tool for RCT. Results. Two articles were identified. Both demonstrated a statistically significant improvement in the pain (p<0.05) using a visual analogue scale in the RFN group compared to the sham procedure. Only one trial demonstrated a corresponding reduction in analgesic use. There was no consensus of improvement of quality of life factors in either study as compared to placebo. Conclusion. Radiofrequency denervation is better than sham procedure in treating pain caused by facet joint osteoarthritis with minimal adverse effects in the short term. A higher powered trial using a larger cohort and longer follow up is required to resolve some of the equivocal results. Conflicts of Interest. None. Source of Funding. None


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 6 - 6
1 Apr 2018
Geurts J Ramp D Schären S Netzer C
Full Access

Introduction. Augmentation of spinal fusion using bone grafts is largely mediated by the osteoinductive potential of mesenchymal stem cells (MSC) that reside in cancellous bone. Iliac crest (IC) is a common autograft, but its use presents an increased risk for donor-site pain, morbidity and infection. Degenerative facet joints (FJ) harvested during facetectomy might servce as alternative local grafts. In this study, we conducted an intra-individual comparison of the osteogenic potential of MSC from both sources. Methods. IC and degenerative FJ were harvested from 8 consecutive patients undergoing transforaminal lumbar interbody fusion surgery for spinal stenosis. MSC were isolated by collagenase digestion, selected by plastic adherence and minimally expanded for downstream assays. Clonogenic and osteogenic potential was evaluated by colony formation assays in control and osteogenic culture medium. Osteogenic properties, including alkaline phosphatase (ALP) induction, matrix mineralization and type I collagen mRNA and protein expression were characterized using quantitative histochemical staining and reverse transcription PCR. Spontaneous adipogenesis was analysed by adipocyte enumeration and gene expression analysis of adipogenic markers. Results. Average colony-forming efficiency in osteogenic medium was equal between IC (38±12%) and FJ (36±11%). Osteogenic potential at the clonal level was 55±26 and 68±17% for IC and FJ MSC, respectively. Clonogenic and osteogenic potential were significantly negatively associated with donor age. Osteogenic differentiation led to significant induction of ALP activity in IC (6-fold) and FJ (8-fold) MSC. Matrix mineralization quantified by Alizarin red staining was increased by osteogenic differentiation, yet similar between both MSC sources. Protein expression of type I collagen was enhanced during osteogenesis and significantly greater in IC MSC. Correspondingly, COL1A2 mRNA expression was higher in osteogenically differentiated MSC from IC. Adipocyte numbers showed significant differences between IC (63±60) and FJ (18±15) MSC under osteogenic conditions. Negative (GREM1) and positive (FABP4) adipogenic markers were not differentially expressed between sources. Conclusion. MSC from IC and degenerative FJ largely display similar clonogenic and osteogenic properties in vitro. Differences at the molecular level are not likely to impair the osteoinductive capacity of FJ MSC. Facetectomy samples are viable bone autografts for intervertebral spinal fusion


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 36 - 36
17 Nov 2023
Warren J Mengoni M
Full Access

Abstract. Objectives. While spinal fusion is known to be associated with adjacent disc degeneration, little is known on the role of the facet joints in the process, and whether their altered biomechanics following fusion plays a role in further spinal degeneration. This work aimed to develop a model and method to sequentially measure the effects of spinal fusion on lumbar facet joints through synchronisation of both motion analysis, pressure mapping and mechanical analysis. Methods. Parallel measurements of mature ovine lumbar facet joints (∼8yr old, n=3) were carried out using synchronised load and displacement measurements, motion capture during loading and pressure mapping of the joint spaces during loading. Functional units were prepared and cemented in PMMA endcaps. Displacement-controlled compression measurements were carried out using a materials testing machine (3365, Instron, USA) at 1 mm/min up to 950 N with the samples in a neutral position, while motion capture of the facet joints during compression was carried out using orthogonal HD webcams (Logitech, Switzerland) to measure the displacement of key facet joint features. The pressure mapping of load transfer during displacement was carried out using a flexible pressure sensor (6900 series, Tekscan, USA). Each sample was imaged at an isotropic resolution of 82 microns using a μCT scanner (XtremeCT, Scanco, Switzerland) to quantify the curvature within the facet joints. Results. Relative facet joint displacement under load, in a neutral position, showed more displacement (2.36 ±1.68 mm) compared to the cross-head when under compression (2.06 ±1.19 mm). Motion capture indicated the relative displacement of the facet joints was more posterior with some lateral motion. For five of the six facet joints, pressure measurement was possible only on 24±7 % of the surface due to the large change in curvature. Partially measured loads through the facets was 10.5 ±1.1 N. Conclusions. The relative displacement of the lumbar facet joints compared to the crosshead displacement was consistent with previous studies of cervical facet joints, despite the differences in anatomical geometry between cervical and lumbar joints. The difficulties in accurately measuring the load transfer through the facet joints was due to the age of the tissue and the degree of curvature of the facet joints. Synchronisation of the biomechanical data will provide a setup to assess the effect of interventions such as spinal fusion, with curvature-related issues unlikely to occur in human spines. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 21 - 21
1 Mar 2021
Seidel M Busso N Hügle T Geurts J
Full Access

Recent clinical studies on targeting nerve growth factor (NGF) in chronic low back pain and knee osteoarthritis have demonstrated efficient pain reduction in a short-term treatment regimen. However, the increased risk for the development of rapid progressive osteoarthritis at the required high drug dose remains a serious concern and prompts thorough analysis of the tissue distribution and role of NGF in degenerative musculoskeletal disorders. Here, we sought to investigate tissue distribution of NGF, its high affinity receptor TrkA and CD68-positive macrophages in human facet joint osteoarthritis of the lumbar spine. Facet joint specimens (n=10) were harvested by facetectomy from patients undergoing elective lumbar intervertebral spine fusion. Facet joint osteoarthritis and presence of synovitis was graded using preoperative magnetic resonance imaging. Tissue distribution of NGF, TrkA and CD68 was determined using immunohistochemistry. Tissue degradation was graded on safranin-O-stained tissue sections. Association between imaging parameters and tissue distribution was determined using Pearson correlation analysis. Synovitis was present in 6 cases and facet joints displayed moderate to severe radiological osteoarthritis (median Weishaupt grade; 2 [1.5–3]). NGF was expressed in 8 of 10 specimens. NGF was expressed in connective tissue, articular and fibrocartilage, but not bone tissue. Cartilaginous NGF expression was predominantly found in the extracellular matrix of superficial cartilage tissue with complete loss of proteoglycans, chondrocyte death and structural damage (fissures). Loss of cartilage proteoglycan staining alone did not display NGF immunoreactivitiy. NGF expression was not correlated with radiological osteoarthritis severity or presence of synovitis. NGF high affinity receptor TrkA was exclusively expressed in bone marrow tissues. Differential grades of bone marrow infiltration by CD68-positive macrophages were observed, yet these were not associated with NGF expression. Targeting NGF in chronic low back pain and/or facet joint osteoarthritis might affect pathomechanisms in cartilaginous tissues and NGF signalling in the bone marrow compartment


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 9 - 9
2 Jan 2024
Vadalà G Papalia G Russo F Ambrosio L Franco D Brigato P Papalia R Denaro V
Full Access

The use of intraoperative navigation and robotic surgery for minimally invasive lumbar fusion has been increasing over the past decade. The aim of this study is to evaluate postoperative clinical outcomes, intraoperative parameters, and accuracy of pedicle screw insertion guided by intraoperative navigation in patients undergoing lumbar interbody fusion for spondylolisthesis. Patients who underwent posterior lumbar fusion interbody using intraoperative 3D navigation since December 2021 were included. Visual Analogue Scale (VAS), Oswestry Disability Index (ODI), and Short Form Health Survey-36 (SF-36) were assessed preoperatively and postoperatively at 1, 3, and 6 months. Screw placement accuracy, measured by Gertzbein and Robbins classification, and facet joint infringement, measured by Yson classification, were assessed by intraoperative Cone Beam CT scans performed at the end of instrumentation. Finally, operation time, intraoperative blood loss, hospital stay, and screw insertion time were evaluated. This study involved 50 patients with a mean age of 63.7 years. VAS decreased from 65.8±23 to 20±22 (p<.01). ODI decreased from 35.4%±15 to 11.8%±14 (p<.01). An increase of SF-36 from 51.5±14 to 76±13 (p<.01) was demonstrated. The accuracy of “perfect” and “clinically acceptable” pedicle screw fixation was 89.5% and 98.4%, respectively. Regarding facet violation, 96.8% of the screws were at grade 0. Finally, the average screw insertion time was 4.3±2 min, hospital stay was 4.2±0.8 days, operation time was 205±53 min, and blood loss was 169±107 ml. Finally, a statistically significant correlation of operation time with hospital stay, blood loss and placement time per screw was found. We demonstrated excellent results for accuracy of pedicle screw fixation and violation of facet joints. VAS, ODI and SF-36 showed statistically significant improvements from the control at one month after surgery. Navigation with intraoperative 3D images represents an effective system to improve operative performance in the surgical treatment of spondylolisthesis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 88 - 88
17 Apr 2023
Aljuaid M Alzahrani S Alzahrani A Filimban S Alghamdi N Alswat M
Full Access

Cervical spine facet tropism (CFT) defined as the facets’ joints angles difference between right and left sides of more than 7 degrees. This study aims to investigate the relationship between cervical sagittal alignment parameters and cervical spine facets’ tropism. A retrospective cross-sectional study carried out in a tertiary center where cervical spine magnetic resonance imaging (MRI) radiographs of patients in orthopedics/spine clincs were included. They had no history of spine fractures. Images’ reports were reviewed to exclude those with tumors in the c-spine. A total of 96 patients was included with 63% of them were females. The mean of age was 45.53± 12.82. C2-C7 cobb's angle (CA) and C2-C7 sagittal vertical axis (SVA) means were −2.85±10.68 and 1.51± 0.79, respectively. Facet tropism was found in 98% of the sample in at least one level on either axial or sagittal plane. Axial C 2–3 CFT and sagittal C4-5 were correlated with CA (r=0.246, P 0.043, r= −278, P 0.022), respectively. In addition, C2-C7 sagittal vertical axis (SVA) was moderately correlated with axial c2-3 FT (r= −0.330, P 0.006) Also, several significant correlations were detected in our model Cervical vertebral slopes and CFT at the related level. Nonetheless, high BMI was associated with multi-level and multiplane CFT with higher odd's ratios at the lower levels. This study shows that CFT at higher levels is correlated with increasing CA and decreasing SVA and at lower levels with decreasing CA. Obesity is a risk factor for CFT


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 43 - 43
11 Apr 2023
Amirouche F Mok J Leonardo Diaz R Forsthoefel C Hussain A
Full Access

Lateral lumbar interbody fusion (LLIF) has biomechanical advantages due to the preservation of ligamentous structures (ALL/PLL), and optimal cage height afforded by the strength of the apophyseal ring. We compare the biomechanical motion stability of multiple levels LLIF (4 segments) utilising PEEK interbody 26mm cages to stand-alone cage placement and with supplemental posterior fixation with pedicle screw and rods. Six lumbar human cadaver specimens were stripped of the paraspinal musculature while preserving the discs, facet joints, and osteoligamentous structures and potted. Specimens were tested under 5 conditions: intact, posterior bilateral fixation (L1-L5) only, LLIF-only, LLIF with unilateral fixation and LLIF with bilateral fixation. Non-destructive testing was performed on a universal testing machine (MTS Systems Corp) to produce flexion-extension, lateral-bending, and axial rotation using customized jigs and a pulley system to define a non-constraining load follower. Three-dimensional spine motion was recorded using a motion device (Optotrak). Results are reported for the L3-L4 motion segment within the construct to allow comparison with previously published works of shorter constructs (1-2 segments). In all conditions, there was an observed decrease in ROM from intact in flexion/extension (31%-89% decrease), lateral bending (19%-78%), and axial rotation (37%-60%). At flexion/extension, the decreases were statistically significant (p<0.007) except for stand-alone LLIF. LLIF+unilateral had similar decreases in all planes as the LLIF+bilateral condition. The observed ROM within the 4-level construct was similar to previously reported results in 1-2 levels for stand-alone LLIF and LLIF+bilateral. Surgeons may be concerned about the biomechanical stability of an approach utilizing stand-alone multilevel LLIF. Our results show that 4-level multilevel LLIF utilizing 26 mm cages demonstrated ROM comparable to short-segment LLIF. Stand-alone LLIF showed a decrease in ROM from the intact condition. The addition of posterior supplemental fixation resulted in an additional decrease in ROM. The results suggest that unilateral posterior fixation may be sufficient


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 30 - 30
1 Apr 2018
Netzer C Distel P Wolfram U Schären S Geurts J
Full Access

Introduction. Facet joint osteoarthritis (FJOA) is a prominent clinical hallmark of degenerative spine disorders. During disease progression, cartilage and subchondral bone tissues undergo increased turnover and remodeling. The structural changes to the subchondral tissue of FJOA have not been studied thus far. In this study, we performed a micro computed tomography (µCT) study of the subchondral cortical plate (SCP) and trabecular bone (STB) in FJOA and determined osteoarthritis-specific alterations. Methods. Twenty-four patients (11 male, 13 female, median age 65) scheduled for decompression and stabilization surgery for degenerative spinal stenosis were included in this study. FJOA specimens were harvested during surgery and analyzed by µCT. Bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp) and trabecular number (Tb.N) were evaluated using CT Analyser. Lumbar facet joints without chondropathy from cadaveric specimens (9 male, 6 female, median age 57) served as healthy controls. Age-, gender- and disease-specific effects were identified by ANOVA (p<0.05) and significant differences confirmed by Bonferroni's post-test. Association between age and structural parameters was determined using correlation analysis. Results. Cortical and trabecular bone structural parameters of FJOA were similar between males and females. Compared to healthy controls, FJOA specimens demonstrated significantly greater trabecular Tb.N (1.97±0.11 vs 1.24±0.04 mm-1) and decrease of Tb.Sp (0.44±0.03 vs 0.69±0.03 mm). Conversely, subchondral cortical plate thickness (0.62±0.08 vs 1.60±0.08 mm) and porosity (22.9±1.9 vs 31.5±2.1%) were significantly less compared to healthy specimens. Tb.Th was equal between patients and controls. Age was positively correlated with Tb.N (r=0.48, p=0.02) and negatively correlated with Tb.Sp (r=−0.44, p=0.03) and cortical plate thickness (r=−0.52, p=0.04) in FJOA. Cortical and trabecular bone parameters did not associate in healthy and osteoarthritic facet joints. Conclusion. FJOA bone remodeling is characterized by thinning of the SCP and an increase in the number of subchondral trabeculae. Remodeling of cortical and trabecular bone might occur in an uncoupled fashion. Targeting elevated subchondral bone remodeling might slow progression of lumbar FJOA


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 86 - 86
1 Apr 2018
Geurts J Burckhardt D Netzer C Schären S
Full Access

Introduction. Histology remains the gold standard in morphometric and pathological analyses of osteochondral tissues in human and experimental bone and joint disease. However, histological tissue processing is laborious, destructive and only provides a two-dimensional image in a single anatomical plane. Micro computed tomography (μCT) enables non-destructive three-dimensional visualization and morphometry of mineralized tissues and, with the aid of contrast agents, soft tissues. In this study, we evaluated phosphotungstic acid-enhanced (PTA) μCT to visualize joint pathology in spine osteoarthritis. Methods. Lumbar facet joint specimens were acquired from six patients (5 female, age range 31–78) undergoing decompression surgery. Fresh osteochondral specimens were immediately fixed in formalin and scanned in a benchtop μCT scanner (65 kV, 153 mA, 25 μm resolution). Subsequently, samples were completely decalcified in 5% formic acid, equilibrated in 70% ethanol and stained up to ten days in 1% PTA (w/v) in 70% ethanol. PTA-stained specimens were scanned at 70 kV, 140 mA, 15 μm resolution. Depth-dependent analysis of X-ray attenuation in cartilage tissues was performed using ImageJ. Bone structural parameters of undecalcified and PTA-stained specimens were determined using CT Analyser and methods were compared using correlation and Bland-Altman analysis. Results. The maximal penetration depth of PTA in decalcified facet joint was 5 mm. Bone tissue showed strong and uniformly distributed X-ray attenuation, while mild to moderate and differentially distributed attenuation was observed in articular cartilage and subchondral marrow spaces. Measurements of bone volume (r=0.90, p=0.01) and bone surface (r=0.95, p=0.004) were strongly correlated between undecalcified and PTA-stained samples. Compared with PTA-stained samples, measurements in undecalcified specimens were consistently higher (∼14%). PTA-enhanced μCT visualization of cartilage tissues enabled the identification of individual chondrocytes and their pericellular microenvironment (chondrons). Owing to loss of collagen lower X-ray attenuation was observed in the middle and deep cartilage layers at the central, but not peripheral, regions of the degenerated facet joint specimens. Depth-dependent analysis of PTA-staining intensity suggested that the extent of collagen loss in articular cartilage might correlate with the thickness of the subchondral cortical plate. Conclusion. PTA-enhanced μCT is a low-cost, non-toxic and highly feasible method for ex vivo 3D-visualization of osteochondral pathology in human osteoarthritis. The method enables bone morphometric analysis, as well as collagen distribution in all anatomical planes. Contrast enhanced μCT has several applications in bone and osteoarthritis research including 3D histopathological grading, tissue stratification, and imaging and analysis of aberrant collagen metabolism in osteochondral disease


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 74 - 74
1 Jul 2014
Brandolini N Kapur N Hall R
Full Access

Summary Statement. Burst fractures were simulated in vitro on human cadaveric spine segments. Displacement of the facet joints and pedicles were measured throughout the fracture process showing how these bony structures behave when an impact load is delivered. Introduction. Burst fractures account for almost 30% of all spinal injuries, which may result in severe neurological deficit, spinal instability and hence life impairment. 1. The onset of the fracture is usually traumatic, caused by a high-energy impact loading. Comminution of the endplates and vertebral body, retropulsion of fragments within the canal and increase of the intrapedicular distance are typical indicators of the injury. Experimental and numerical studies have reported strain concentration at the base of the pedicles, suggesting that the posterior processes play a fundamental role in the fracture initiation. 2,3. However, little is known about the dynamic behaviour of the vertebra undergoing an impact load. The aim of this study was to provide an in vitro cadaveric investigation on burst fracture, focusing on the widening of the facet joints and pedicles during the fracture development. Methods. Eight three-adjacent-vertebrae segments (T9-T10-T11, T12-L1-L2, L3-L4-L5) were harvested from three human spines preserving the ligaments and intervertebral discs. A testing frame was designed to hold the sample whilst undergoing an axial impact load (delivered through a drop-weight rig). Lateral displacement was recorded by two transducers (LVDT) sampled at 5000 Hz and data were used to calculate the percent maximum dynamic widening (MW) and percent residual widening after the impact (RW). LVDTs were positioned in contact with the most lateral region of the cranial facet joints where the central vertebra was lumbar; or posteriorly to the base of the pedicles for thoracic. Samples were divided into two groups to achieve two different grade of severity of the fracture by delivering two different amount of energy: High (HE) and Low (LE). Samples underwent HR-pQCT scanning prior and after fracturing to assess percent canal narrowing (CN), intrapedicular distance and grade the fracture. Differences between results were assessed using Mann-Whitney U test. Results. Burst fractures were induced in all the samples (fragment retropulsion was present in all HE samples). The median energy delivered to each group was 206J (HE) and 148J (LE) which led to a significant difference in the median CN (HE: 32.4%; LE: 11.8%; p=0.029). No significant difference was found between HE and LE in terms of MW (p=0.11), or RW (p=0.85). Furthermore, MW and CN were poorly correlated (R. 2. =0.13). In all the cases, the first peak in the widening data coincided with MW (median 12.8%, range 4.3–21.8%). RW measurements (median 2.8%, range −1.3–11.5%) were validated against HR-pQCT scans showing excellent agreement (R. 2. =0.93). Discussion/Conclusion. Results from this study provided further insight on the burst fracture process supporting the wedging effect of the adjacent facet joints when the impact load is transmitted. Indeed, the pedicles were forced to widen up to a critical value (MW), after which they fractured. Further experiments will help clarifying the influence of the amount of energy delivered


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 217 - 217
1 Jul 2014
Ivicsics MF Bishop N Püschel K Berteau J Morlock M Huber G
Full Access

Summary. Nucleotomy almost doubles the transmitted forces on the facet joints in human lumbar spine, regardless of the amount of removed nucleus pulposus. Introduction. Low back pain involves the lumbar facet joints in 15% to 45% of the cases. The surgical intervention, nucleotomy, might also lead to painful facets with a high risk; however, its mechanism is yet to be fully understood. The aim of this study is to reveal how a small amount of nucleus removal can change the force transmission on the facets. 1.1.1.1 Methods. Nine human lumbar motion segments with a median age of 48 years (interquartile range: 8.3) were tested quasi-statically (0.2 Hz) in extension and flexion (+/−5°) under constant compression loading (700 N). Specimens were tested in vitro by a servo-hydraulic test rig (MTS, USA) equipped with an additional superstructure enabling independent actuation of axial compression, extension-flexion and anterior-posterior shear on the top of the specimen. Forces and moments were measured beneath the specimen. The test method is based on recording intact and nucleotomy performed (range of removed nucleus 0.888–1.708 g) kinematics, which were applied in sequence, at different reduction stages of the same specimen. In the last steps, the facets were the only force transmitting structures, therefore, the load cell beneath the specimen revealed the force transmission on the facets. 1.1.2 Results. The average proportion of force transmitted through the facets increased significantly due to nucleotomy for both an intact capsular ligament (caps. lig.) (p=0.008) from 8.6% (5.2) to 15.8% (6.2), and without a caps. lig. from 8.4% (2.3) to 10.3% (4.9, p = 0.008). Amount of removed nucleus did not show statistically significant correlation to the force increase on facets due to nucleotomy (p>0.19). Forces on the facets were the highest in extension: fully intact 10.7% (6.6), nucleotomy with caps. lig. 19.0% (9.6), intact without caps. lig. 9.37% (3.42), and nucleotomy without caps. lig. 12.6% (6.5). Discussion. Results show, that even a small amount of nucleus removal increase the transmitted forces on facet joints, independent of the amount of removed nucleus. Therefore, a surgeon's decision on the amount of nucleus to remove might perhaps be based on aspects other than facet loading - for example, the avoidance of reherniation. Since facet loading is highest in extension, patients after nucleotomy should perhaps limit this motion as far as possible


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 43 - 43
1 Apr 2017
Arts J Marangalou JH Meijer G Ito K van Rietbergen B Homminga J
Full Access

Background. Finite element (FE) models have become a standard pre-clinical tool to study biomechanics of spine and are used to simulate and evaluate different strategies in scoliosis treatment: examine their efficacy as well as the effect of different implant design parameters. The goal of this study is to investigate, in a system of rods and laminar wires, the effect of the number of wires and their pre-stress on whole spine stiffness. Methods. A generic FE model was developed to represent a full human spine, including vertebrae, intervertebral discs, ligaments, facet and costovertebral joints, and ribcage. Intervertebral discs were modeled with 3D rebar elements with linear elastic material properties. Vertebrae, ribs, sternum, facet joints, cartilage and endplates were modeled with brick elements, and costal muscles with shell elements with linear elastic properties. Furthermore, ligaments were modeled with truss elements with nonlinear hypo-elastic properties. The spine model was instrumented from T7 to T12 with rods and wires modeled as titanium. Nonlinear contact properties were defined for rib neck-vertebra, transverse processes-rib and facet joint sets. The FE model was loaded in flexion and the whole spine instantaneous stiffness was calculated for different wire pre-stressing levels (0.1 to 2 MPa). Similar analyses were performed with changed numbers of wires and whole spine stiffness was calculated. Results. The results show that with increasing the pre-stress level the whole spine instantaneous stiffness increases by up to 6%. Reducing the number of wires decreases the whole spine stiffness almost linearly by 5%. These changes also alter center of rotation of the spine. The results suggest that pre-stressing and number of wires have an effect on whole spine stiffness. Conclusions. In summary, the develop FE model can be used to simulate different treatment strategies and to improve implant designs used in surgical treatment of scoliosis. Level of evidence. FEA study


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 23 - 23
1 Dec 2020
MERTER A
Full Access

With the increase in the elderly population, there is a dramatic increase in the number of spinal fusions. Spinal fusion is usually performed in cases of primary instability. However it is also performed to prevent iatrogenic instability created during surgical treatment of spinal stenosis in most cases. In literature, up to 75% of adjacent segment disease (ASD) can be seen according to the follow-up time. 1. Although ASD manifests itself with pathologies such as instability, foraminal stenosis, disc herniation or central stenosis. 1,2. There are several reports in the literature regarding lumbar percutaneous transforaminal endoscopic interventions for lumbar foraminal stenosis or disc herniations. However, to the best our knowledge, there is no report about the treatment of central stenosis in ASD. In this study, we aimed to investigate the short-term results of unilateral biportal endoscopic decompressive laminotomy (UBEDL) technique in ASD cases with symptomatic central or lateral recess stenosis. The number of patients participating in the prospective study was 8. The mean follow-up was 6.9 (ranged 6 to 11) months. The mean age of the patients was 68 (5m, 3F). The development of ASD time after fusion was 30.6 months(ranged 19 to 42). Mean fused segments were 3 (ranged 2 to 8). Preoperative instability was present in 2 of the patients which was proven by dynamic lumbar x-rays. Preoperative mean VAS-back score was 7.8, VAS Leg score was 5.6. The preoperative mean JOA (Japanese Orthopaedic Association) score was 11.25. At 6th month follow-up, the mean VAS back score of the patients was 1, and the VAS leg score was 0.5. This improvement was statistically significant (p = 0.11 and 0.016, respectively). The mean JOA score at the 6th month was 22.6 and it was also statistically significant comparing preoperative JOA score(p = 0.011). The preoperative mean dural sac area measured in MR was 0.50 cm2, and it was measured as 2.1 cm. 2. at po 6 months.(p = 0.012). There was no progress in any patient's instability during follow-up. In orthopedic surgery, when implant related problems develop in any region of body (pseudoarthrosis, infection, adjacent fracture, etc.), it is generally treated by using more implants in its final operation. This approach is also widely used in spinal surgery. 3. However, it carries more risk in terms of devoloping ASD, infection or another complications. In the literature, endoscopic procedures have almost always been used in the treatment of ventral pathologies which constitute only 10%. In ASD, disease devolops as characterized by wide facet joint arthrosis and hypertrophied ligamentum flavum in the cranial segment and it is mostly presented both lateral recess and santal stenosis symptoms (39%). In this study, we found that UBEDL provides successful results in the treatment of patients without no more muscle and ligament damage in ASD cases with spinal stenosis. One of the most important advantages of UBE is its ability to access both ventral and dorsal pathologies by minimally invasive endoscopic aproach. I think endoscopic decompression also plays an important role in the absence of additional instability at postoperatively in patients. UBE which has already been described in the literature given successful results in most of the spinal degenerative diseases besides it can also be used in the treatment of ASD. Studies with longer follow-up and higher patient numbers will provide more accurate results


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 88 - 88
1 Apr 2018
Khalaf K Nikkhoo M Parnianpour M Bahrami M Cheng CH
Full Access

Clinical investigations show that the cervical spine presents wide inter-individual variability, where its motion patterns and load sharing strongly depend on the anatomy. The magnitude and scope of cervical diseases, including disc degeneration, stenosis, and spondylolisthesis, constitute serious health and socioeconomic challenges that continue to increase along with the world”s growing aging population. Although complex exact finite element (FE) modeling is feasible and reliable for biomechanical studies, its clinical application has been limited as it is time-consuming and constrained to the input geometry, typically based on one or few subjects. The objective of this study was twofold: first to develop a validated parametric subject-specific FE model that automatically updates the geometry of the lower cervical spine based on different individuals; and second to investigate the motion patterns and biomechanics associated with typical cervical spine diseases. Six healthy volunteers participated in this study upon informed consent. 26 parameters were identified and measured for each vertebra in the lower cervical spine from Lateral and AP radiographs in neutral, flexion and extension viewpoints in the standing position. The lower cervical FE model was developed including the typical vertebrae (C3-C7), intervertebral discs, facet joints, and ligaments using ANSYS (PA, USA). In order to validate the FE model, the bottom surface of C7 was fixed, and a 73.6N preload together with a 1.8 N.m pure moment were input into the model in both flexion and extension. The results were compared to experimental studies from literature. Disc degeneration disease (DDD) was used as an example, where the geometry of C5-C6 disc was changed in the model to simulate 3 different grades of disc degeneration (mimicking grades 1 to 3), and the resulting biomechanical responses were evaluated. The average ranges of motion (ROM) were found to be 4.84 (±0.73) degrees and 5.36 (±0.68) degrees for flexion and extension for C5-C6 functional unit, respectively, in alignment with literature. The total ROM of the model with disc generation grades 2 and 3 was found to have decreased significantly as compared to the intact model. In contrast, the axial stresses on the degenerated discs were significantly higher than the intact discs for all 3 degeneration grades. Our preliminary results show that this novel validated subject-specific FE model provides a potential valuable tool for noninvasive time and cost effective analyses of cervical spine biomechanical (kinematic and kinetic) changes associated with various diseases. The model also provides an opportunity for clinicians to use quantitative data towards subject-specific informed therapy and surgical planning. Ongoing and future work includes expanding the studied population to investigate individuals with different cervical spine afflictions


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 36 - 36
1 Apr 2018
Khalaf K Nikkhoo M Parnianpour M Bahrami M Khalaf K
Full Access

Worldwide, osteoporosis, causes more than 8.9 million fractures annually, resulting in an osteoporotic fracture every 3 seconds, where 1 in every 3 women and 1 in every 5 men aged over 50 will experience osteoporotic fractures at least once in their lifetime. Vertebral fractures, estimated at 1.4 million/year are among the most common fractures, posing enormous health and socioeconomic challenges to the individual and society at large. Considering that the great majority of individuals at high risk (up to 80%), who have already had at least one osteoporotic fracture, are neither identified nor treated, prediction of the risk factors for vertebral fractures can be of great value for prevention/early diagnosis. Recent studies show that finite element analysis of computed tomography (CT) scans provides noninvasive means to assess fracture risk and has the potential to be clinically implemented upon proper validation. The objective of this study was to develop a voxel-based finite element model using quantitative computed tomography (QCT) images in conjunction with in-vitro experiments to evaluate the strength of the vertebral bodies and predict the fracture risk criteria. A total of 10 vertebrae were dissected from juvenile sheep lumbar spines. The attached soft tissues and posterior elements and facet joints were completely removed, and the upper and lower vertebral bodies were polished using glass paper to provide smooth surfaces. The specimens were wrapped in phosphate buffer saline (PBS) soaked gauze, sealed in plastic bags, and stored in a refrigerator at −22°C. QCT scans of the specimens were captured using a bone density calibration phantom (QRM Co., Moehrendorf, Germany) with three 18 mm cylindrical inserts, providing 0, 100 and 200 mg HA/ccm, respectively. All the specimens, preserved hydrated in PBS solution, were mechanically tested at room temperature using a mechanical testing apparatus (Zwick/Roell, Ulm-Germany). The QCT images were then used to reconstruct the voxel-based FE model employing a custom-developed heterogeneous material mapping code. Five different equations for the correlation of the density and the elastic modulus were used to validate the efficiency of the FE model as compared to the in-vitro experiments. The results of the voxel-based FE models matched well with the in-vitro experiments, with an average error of 11.38 (±4.09)% based on the power law equation. A failure criterion was embedded in the FE models and the initiation of fracture was successfully predicted for all specimens. Further, typical kyphoplasty treatment was simulated in the 5 models to evaluate the application of the validated algorithm in the estimation of the failure patterns. Our novel voxel-based FE model can be used in future studies to predict the outcome of different types of therapeutic modalities/surgeries and estimate fracture risk including postoperative fractures


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 36 - 36
1 Jan 2013
Ohwada T Yamashita T Miwa T Sakaura H
Full Access

Introduction. Recently various type of spinal instrumentation was applied, and they are essential in modern spinal fusion surgery. Whereas several authors reported increased possibility of complication and degeneration on adjacent segment. We tried PLIF without instrumentation with box type intervertebral cages. Method. Forty-one cases of degenerative lumbar diseases were treated by PLIF with carbon cages without spinal instrumentation. There were 17 males and 24 females, and age averaged 71.4 years. Thirty-two cases were degenerative spondylolisthesis, five were spinal stenosis, and four were disc herniation. Single PLIF was performed on forty cases, and double segment in one, with additional decompression on other segment in twenty. Bilateral facet joint were preserved to avoid lateral instability. Two pieces of cage were inserted with local bone graft. Post-op. follow-up period were 12 to 24 months, 15 months on average. Result. JOA score (29 pts on full mark) averaged 12.7 pts before the operation and was 25.4 pts at the F/U. Recovery ratio averaged 77.9%. Clinical result was excellent in 27 with more than 75% of R/R. One case showed symptomatic non-union, and additional instrumentation was applied after one year. Thirty-three cases (80%) showed solid bone union after one year, and eight cases were classified as non-union. Whereas early cage migration with vertebral collapse was seen on fourteen, and union with collapse was seen in eight. These conditions showed less clinical outcome. Conclusion. Stand alone PLIF resulted in good clinical results with box type cages. Stand alone PLIF is less invasive method and minimize chance of complication. Conflicts of interest. None. Sources of funding. None


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 6 | Pages 1073 - 1078
1 Nov 1998
Tucker SK Taylor BA

In normal, physiological circumstances there is ample room in the spinal canal to accommodate the spinal cord. Our study aimed to identify the degree of compromise of the spinal canal which could be anticipated in various atlantoaxial pathological states. We examined paired atlas and axis vertebrae using high-definition radiography and simultaneous photography in both normal and simulated pathological orientations in order to measure the resultant dimension of the spinal canal and its percentage occlusion. At the extreme of physiological axial rotation (47°) the spinal canal is reduced to 61% of its cross-sectional area in neutral rotation. The spinal cord is thus safe from compromise. Atlantoaxial subluxation of up to 9 mm reduces the area of the spinal canal, in neutral rotation, to 60% with no cord compromise. Any rotation is, however, likely to cause cord compression. The mechanism of fixation in atlantoaxial rotatory subluxation could be explained by bony interlocking of the facet joint, reproducible in dry bones


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1666 - 1672
1 Dec 2007
Mizuno S Takebayashi T Kirita T Tanimoto K Tohse N Yamashita T

A rat model of lumbar root constriction with an additional sympathectomy in some animals was used to assess whether the sympathetic nerves influenced radicular pain. Behavioural tests were undertaken before and after the operation.

On the 28th post-operative day, both dorsal root ganglia and the spinal roots of L4 and L5 were removed, frozen and sectioned on a cryostat (8 μm to 10 μm). Immunostaining was then performed with antibodies to tyrosine hydroxylase (TH) according to the Avidin Biotin Complex method. In order to quantify the presence of sympathetic nerve fibres, we counted TH-immunoreactive fibres in the dorsal root ganglia using a light microscope equipped with a micrometer graticule (10 x 10 squares, 500 mm x 500 mm). We counted the squares of the graticule which contained TH-immunoreactive fibres for each of five randomly-selected sections of the dorsal root ganglia.

The root constriction group showed mechanical allodynia and thermal hyperalgesia. In this group, TH-immunoreactive fibres were abundant in the ipsilateral dorsal root ganglia at L5 and L4 compared with the opposite side. In the sympathectomy group, mechanical hypersensitivity was attenuated significantly.

We consider that the sympathetic nervous system plays an important role in the generation of radicular pain.