Advertisement for orthosearch.org.uk
Results 1 - 13 of 13
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 125 - 125
1 Nov 2018
Kurnik C Mercer D Mercer R Salas C Moneim M Kamermans E Benjey L
Full Access

Extensor tendon attachment to the dorsum of the proximal phalanx may fully extend the finger metacarpal phalangeal joint (MPJ). 15 fresh-frozen cadaveric hands were axially loaded in the line of pull to the extensor digitorum comunis of the index, middle, ring and small finger at the level just proximal to the MPJ. We measured force of extension at the MP joint in 3 groups: 1) native specimen, 2) extensor tendon release at the proximal interphalangeal (PIP) joint with release of lumbricals/lateral bands, 3) extensor tendon release at the PIP joint and dorsal proximal phalanx and lumbrical/lateral band release. Degree change of extension was calculated using arctan function with height change of the distal aspect of the proximal phalanx, and the length of the proximal phalanx. We used Student T-test to determine significant decrease in the extension of the phalanges. Extension of all fingers decreased slightly when the extensor tendon were severed at the PIP joint with release of the lateral bands/lumbricals (8deg+/−2deg). After this release, the finger no longer extended. Slight loss of extension was not statistically significant (p >.05) between group 1 and group 2. Groups 1 and 2 were significantly different compared to group 3. In summary, distal extensor tendon transection and release of lateral bands/lumbricals resulted in little change in force and degree of finger extension. The distal insertion of the extensor, released when exposing the PIP joint dorsally, may not need to be repaired to the base of the middle phalanx


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 63 - 63
1 Nov 2018
Mercer L Mercer D Mercer R Moneim M Benjey L Kamermans E Salas C
Full Access

We hypothesized that the finger extensor mechanism has attachments along the dorsal surface of the entire length of the proximal phalanx and that this anatomy has not been clearly defined. The attachment along the dorsal aspect of the proximal phalanx of the index, middle, index and small fingers was dissected in 20 fresh-frozen cadavers. The lateral bands and attachments along the lateral and medial surface were released to appreciate the attachments along the dorsal aspect. We characterized the ligament attachments as very robust, moderately robust, and minimally robust at the distal, middle, and proximal portions. Three orthopaedic surgeons quantified the attachment, finding that 93% of specimens had tendinous attachments and the most robust attachment found at the most proximal and distal aspects adjacent to the articular cartilage. 87% of the specimens had very robust attachments at the proximal portion of the proximal phalanx. The middle portion of the proximal phalanx had moderate to minimally robust attachments. Greatest variability in attachment was found along the most distal portion of proximal phalanx adjacent to the proximal interphalangeal joint (26% of specimens had moderate to minimal robust attachment; 74% had robust attachments). The attachments along the proximal phalanx were attached on the dorsal half of the proximal phalanx, with no fibrous attachments extending past the lateral bands. In summary, we found tendinous attachment along the proximal phalanx that may assist in finger extension and may extend the digit at the metacarpal phalangeal joint without central band contribution.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 5 | Pages 926 - 929
1 Sep 1999
Greenbaum B Itamura J Vangsness CT Tibone J Atkinson R

We studied the origin of extensor carpi radialis brevis using 40 fresh frozen human cadaver specimens. Ten were stained with haematoxylin and eosin and trichrome which showed the collagenous structure of the extensor tendons at their origin. Gross anatomical observation showed that there was no definitive separation between brevis and communis at the osseotendinous junction. The histological findings confirmed the lack of separation between the two tendons. The extensor tendons were in close proximity to the joint capsule but trichrome staining showed no interdigitation of the tendon with the capsule. The validity of ascribing the pain of lateral epicondylitis to extensor carpi radialis brevis must be questioned. It appears to arise more from the ‘common extensor’ origin


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 27 - 27
1 May 2017
Matthews A Jagodzinski N Westwood M Metcalfe J Trimble K
Full Access

The Cobb Stainsby forefoot arthroplasty for claw and hammer toes combines excision arthroplasty (Stainsby) with extensor tendon transfer to the metatarsal head (Cobb). We present a retrospective, three surgeon case series of 218 toes in 128 patients over four years. Clinical notes were reviewed for all patients and 77 could be contacted for a telephone survey. Follow up ranged from 12–82 months. All patients presented with pain and shoe wear problems from dislocated metatarsophalangeal joints either from arthritis, hallux valgus, Freiberg's disease or neurological disorders. Ipsilateral foot procedures were performed simultaneously in 24 (30%) patients. Seventy-two patients (94%) were satisfied, 72 (94%) reported pain relief, 55 (71%) were happy with toe control, 61 (79%) were pleased with cosmesis, 59 (77%) returned to normal footwear and 56 (73%) reported unlimited daily activities. Minor complications occurred in 17 (13%) and 3 (2%) developed complex regional pain syndrome. Four (5%) developed recurrent clawing. The Stainsby procedure permits relocation of the plantar plate under the metatarsal head for cushioned weight-bearing but can create a floppy, unsightly toe. By combining this with the Cobb procedure, our case series demonstrates improved outcomes from either procedure alone with benefits over alternatives such as the Weil's osteotomy. Oxford Level 4 evidence – retrospective case series


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 63 - 63
1 Apr 2017
Al-Azzani W Hill C Passmore C Czepulkowski A Mahon A Logan A
Full Access

Background. Patients with hand injuries frequently present to Emergency Departments. The ability of junior doctors to perform an accurate clinical assessment is crucial in initiating appropriate management. Objectives. To assess the adequacy of junior doctor hand examination skills and to establish whether further training and education is required. Methods. A double-centre study was conducted using an anonymous survey assessing hand examination completed by junior doctors (Foundation year 1 and Senior House Officer grades) working in Trauma & Orthopaedics or Emergency Departments. The survey covered all aspects of hand examination including assessment of: Flexor and Extensor tendons, Nerves (motor and sensory) and Vascular status. Surveys were marked against answers pre-agreed with a Consultant hand surgeon. Results. 32 doctors completed the survey. Tendons: 59% could accurately examine extensor digitorum, 41% extensor pollicis longus, 38% flexor digitorum profundus and 28% flexor digitorum superficialis. Nerves – Motor: 53% could accurately examine the radial nerve, 37% the ulnar nerve, 22% the median nerve and 9% the anterior interosseous nerve. Nerves – Sensory: 88% could accurately examine the radial nerve, 81% the ulnar nerve, 84% the median nerve and 18.8% digital nerves. Vascular: 93% could describe 3 methods of assessing vascularity. Conclusions. Tendon and neurological aspects of hand clinical examination were poorly executed at junior doctor level in this pragmatic survey. This highlights the need for targeted education and training to improve the accuracy of junior doctor hand injury assessment and subsequent improving patient treatment and safety. Recommendations include dedicated hand examination teaching early in Orthopaedic/A&E placements and introduction of an illustrated Hand Trauma Examination Proforma. Level of evidence. III - Evidence from case, correlation, and comparative studies


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 9 - 9
1 Oct 2015
Patel D Sharma S Bryant S Screen H
Full Access

Introduction. The hierarchical structure of tendon results in a complex mechanical strain environment, with tenocytes experiencing both tension and shear during loading. The mechanotransduction mechanisms involved in sensing these environments is currently unclear. To better understand the effects of shear and tension on cell behaviour, a fibre composite system able to recapitulate the physiological shear-tension ratio found in tendons, was used. Cell attachment within the composite was achieved by using either a collagen type I mimetic peptide, DGEA, or a fibronectin associated peptide, YRGDS, and the gene expression response analysed after loading. Materials and Methods. Fibre composites with 4 different shear-tension (S-T) ratios were made using both PEG-DGEA and PEG-YRGDS fibres. 4 composites were made for each S-T ratio, of which 2 were loaded and 2 used as non-strained controls. Bovine digital extensor tendon tenocytes were seeded within composites, with 3 biological repeats from different donors. Loaded samples were exposed to 5% cyclic strain (1Hz) for 24 hours maintained in an incubator. The gene expression of 14 matrix related genes were analysed after loading via RT-qPCR. Results. Tenocytes seeded on PEG-DGEA fibres were more mechano-sensitive than those seeded on PEG-YRGDS fibres; tenocytes in PEG-DGEA composites exhibited upregulation of COL-3, MMP-3 and IL-6, and downregulation of SCX with shear, while tenocytes in PEG-YRGDS composites downregulated TIMP-3 with shear. Discussion. The main integrin involved in DGEA binding is α2β1 while the integrins associated with YRGDS attachment include α5β1, αVβ3 and αIIbβ3. Consequently, the findings of this study emphasise the importance of integrins in the role of mechanotransduction, and suggest integrins involved in collagen type I binding induce functionally different responses in tenocytes to those not involved in collagen type I binding when sensing mechanical stimuli comprised of shear and tension. This information is critical in future studies investigating tenocyte behaviour and tissue engineering approaches, as physiological integrin binding may be key in maintaining normal tenocyte pathways


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 19 - 19
1 Oct 2015
Thorpe C Karunaseelan K Ng J Riley G Birch H Clegg P Screen H
Full Access

Introduction. Energy storing tendons such as the equine superficial digital flexor tendon (SDFT) stretch and recoil with each stride and therefore require a high degree of compliance compared to tendons with a purely positional function, such as the equine common digital extensor tendon (CDET). This extra extensibility is provided by a specialised interfascicular matrix (IFM), which provides greater sliding and recoil between adjacent fascicles in energy storing tendons. However, the composition of the IFM remains largely undefined. We hypothesised that the IFM in the SDFT has a distinct composition, with a greater abundance of proteoglycans and elastin which facilitate extension and recoil. Materials and Methods. Transverse and longitudinal sections were cut from the mid-metacarpal regions of SDFTs and CDETs from 5 horses aged 3–7 years. Sections were stained using Alcian blue/Periodic acid Schiff to detect proteoglycans, elastic Van Giesson's to detect elastin, and immunohistochemistry was performed using antibodies for decorin, biglycan, fibromodulin, lumican and lubricin. Resultant images were graded by blinded observers to assess staining intensity in the IFM and fascicular matrix (FM), and statistical significance determined using ANOVA. Results. Overall proteoglycan abundance was significantly greater in the SDFT than the CDET (p<0.0001). In the SDFT, overall proteoglycan staining was greater in the FM than the IFM (p<0.0001). Elastin content was greater in the SDFT, where it was predominantly localised to the IFM. Fibromodulin staining was significantly greater in the CDET than the SDFT (p<0.05), whereas decorin staining was greater in the SDFT (p<0.05). In the SDFT, lubricin and biglycan staining were significantly greater in the IFM than the FM (p<0.05). Lumican staining was significantly greater in the CDET IFM than in the SDFT IFM (p<0.01). Discussion. As hypothesised, the IFM has a specialised composition in the SDFT, with a greater abundance of elastin, lubricin and biglycan. It is likely that the greater abundance of lubricin facilitates sliding between fascicles, whereas the localisation of elastin to the IFM is likely to provide the superior ability to recoil. The differential abundance of decorin, fibromodulin and lumican across tendon regions and types may reflect the different roles of these proteoglycans in tendon


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 15 - 15
1 Oct 2015
Kharaz YA Tew S Laird E Comerford E
Full Access

Introduction. Tendons and ligaments (TLs) play key roles in the musculoskeletal system. However, they are commonly damaged due to age-related wear and tear or torn in traumatic/sport related incidents resulting in pain and immobility. TLs contain cells and extracellular matrix (ECM) comprised of collagen, elastin, glycoproteins and proteoglycans. Although TLs are composed of similar components, their precise composition and arrangement of matrix macromolecules differ to provide specific mechanical properties and functions. To date little is known about how the main ECM proteins are arranged between the two tissue types. This data will provide essential information on fundamental structure of TLs leading to increased understanding of the function relationship between these tissue types. The aim of this study was to compare tendon-ligament differences in their ECM distribution of collagens, proteoglycans and elastic fibres. Materials and Methods. Anterior cruciate ligament (ACL) and long digital extensor tendon (LDET) were harvested from disease free cadaveric canine knee joints (n=3). Distributions of the main ECM components were assessed on longitudinal sections of ACL and LDET mid-substance. Antibody staining were assessed for collagen type I, III, VI, agreccan, versican, decorin, biglycan, elastin, fibrillin 1 and fibrillin 2. Results. Marked staining of collagen type I was present at fascicular regions, but also present at the interfascicular matrix (IFM). Collagen type III was present at the IFM of tendon, whilst in the ligament it was more widespread being located at both fascicles and IFM. In both TLs, collagen type VI was localised at IFM, but also present surrounding TL fibroblasts. A marked staining of aggrecan and versican was observed in ligament IFM, with pericellular staining of aggrecan present only in ligament. Decorin was found in both fascicular and IFM, whilst biglycan was occasionally present pericelullarly and at IFM in tendon. A similar pattern of elastic fibre distribution was found in both TLs. Discussion. This study has revealed a different ECM distribution of collagen type III, aggrecan, versican in ligament than when compared to tendon. These finding may relate to different functions between TLs and indicate that ligament is subjected to more compressive forces, resulting in different macromolecular arrangements that protect the tissue from damage


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 28 - 28
1 Oct 2015
Godinho M Thorpe C Riley G Birch H Clegg P Screen H
Full Access

Introduction. Whilst all tendons connect muscle to bone, energy storing (ES) tendons, such as the equine superficial digital flexor tendon (SDFT) play an additional role, storing energy to improve locomotion efficiency. ES tendons experience significantly higher strains during locomotion than other positional tendons, such as the common digital extensor tendon (CDET). Our previous work has demonstrated that the interfascicular matrix (IFM) is more extensible in ES tendons, allowing ES tendons to stretch further during use. However, ES tendons must also recoil efficiently to perform their energy storing function. It has not been yet established if the IFM is able to recoil and recover after loading. Thus, this project aimed to determine the recoil capacity of the IFM in both the ES and positional tendons from young and old horses. Materials and Methods. Five young (3–7 years) and five old (17–20 years) SDFTs and CDETs were dissected from the forelimbs of 10 euthanized horses. Groups of 2 intact fascicles (bounded by IFM) were dissected from each tendon. Using a custom-made dissection rig and a polarised light microscope, samples were dissected, and the opposing end of each fascicle was cut transversely, leaving a 10 mm length of IFM. IFM samples were tested in shear, by preconditioning with 10 loading cycles then pulling to failure. The hysteresis and stress relaxation that occurred during preconditioning were calculated. Results. The IFM was able to recoil in both SDFT and CDET tendons. However, hysteresis and stress relaxation were both significantly higher in CDET than SDFT IFM samples. The SDFT IFM was less stiff than the CDET IFM, but the SDFT IFM stiffness increased with ageing. Discussion. The IFM showed reversible deformation behaviour, with a greater ability to recoil in the SDFT. Changes with ageing were only evident in the SDFT, where the IFM became less fatigue resistant and stiffer. These results further indicate that ES tendons have a specialised IFM to facilitate efficient function, and changes in the mechanical properties of this matrix with ageing may predispose these tendons to injury


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 26 - 26
1 Mar 2013
Shepherd J Demirci T Legerlotz K Riley G Screen H
Full Access

Most cases of tendinopathy are believed to be overuse injuries rather than the result of a chronic event. The investigation of the fatigue properties of tendon is therefore of critical importance. This work considered the cyclic stress-relaxation and creep behaviour of two contrasting bovine tendon types – the largely postional digital extensor and the more energy storing deep digital flexor tendon. Fascicles were cyclically loaded (1Hz), to 1800 cycles of stress relaxation or to failure in creep, stopping some tests at 300, 900 or 1200 cycles to perform quasi-static failure tests or confocal imaging using a highly concentrated Acridine Orange solution. Creep tests were cycled to 60% of the ultimate tensile strength (UTS), while for stress relaxation, cyclic deformation to the strain associated with 60% UTS was used. Flexor tendon fascicles were found to exhibit reduced stress relaxation at all time points compared to the extensor fascicles and also showed an increase in the mean cycles to failure during creep testing. Evidence of fatigue damage was clear in the confocal images with breakdown of the collagen fibre alignment evident from 300 cycles; however it appears that some damage could occur without effect on the UTS of the fascicle. Despite what appears to be superior fatigue resistance in the flexor tendon fascicles, the matrix damage, certainly at early time points, appeared visually to be as severe as that observed with the extensor tendon fascicles


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 257 - 257
1 Jul 2014
Shepherd J Riley G Screen H
Full Access

Summary Statement. Tendon micromechanics were investigated using 2 methods. When collagen deformation was measured directly, higher levels of inter-fibre sliding were observed than when tenocyte nuclei were tracked. This suggests that under high strain tenocytes become unattached from the collagen fibres. Introduction. Fibre extension and inter-fibre sliding have both been reported during tendon extension, but fibre sliding is believed to be the predominant mechanism in normal healthy tendon function. Fatigue damage is known to result in structural changes and reduced mechanical properties, but its influence on micromechanics is unknown. This work aimed:. 1. To investigate the effect of fatigue loading on bovine digital extensor fascicle micromechanics, comparing fibre extension and fibre sliding, hypothesising that the relative importance of these may change due to fatigue damage. 2. To compare two techniques for characterising micromechanics: bleaching of a grid to directly measure collagen deformation, and using the cells as fiducial markers of fibre movement. Methods. The tensional regions of healthy digital extensor tendons were removed within 24 hours of slaughter and frozen. Tendons were defrosted, hydrated and fascicles dissected and loaded into custom-designed chambers allowing the mechanical loading of fully hydrated tendon fascicles. Fascicles were loaded for 0, 300 or 900 cycles under creep conditions at a frequency of 1Hz and to a maximum applied stress of 25% of the mean UTS of the fascicles. Fascicles were stained using either Acridine Orange to stain the cell nuclei or DTAF solution to stain the collagen. After DTAF staining, a grid consisting of 4 squares of side 50 μm was photo-bleached using the FRAP system on a Leica TCS SP2 confocal scanning microscope. To investigate micromechanics, fascicles were secured in a uniaxial rig and strained in 2% increments to 10% total strain at a rate of 1%s. −1. Imaging was carried out at each increment and local strains calculated from grid deformation or nuclei movement. Results. No significant changes in micromechanics were observed with increasing numbers of creep cycles, as measured with either technique. This was despite quite significant matrix damage being observed particularly after 900 cycles. When using the grid deformation measure of strains, a continual increase in fibre sliding was seen above 4% applied strain, correlating with the levelling off of intra-fibre strains. This same move towards dominant fibre sliding was not observed with techniques using the nuclei as fiducial markers. Using the nuclei as markers consistently reported significantly lower levels of fibre sliding than those measured from grid deformation at strains of 6% and above, under all creep conditions. Discussion/Conclusion. The apparent absence of any effect of creep on the measured microstructural deformation may be a result of the localised nature of the measurement techniques. At sites where matrix structure broke down both the tracking of nuclei and the photo-bleaching of the grid proved problematic and it is these regions where the greatest degree of deformation would perhaps be expected, with remaining areas of the tissue stress-deprived. The smaller levels of fibre shear reported when measured through nuclei tracking suggests that the tenocytes may not be well adhered to the fibres and may be protected from some of the matrix deformation in response to loading


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 259 - 259
1 Jul 2014
Durgam S Mayandi S Stewart M
Full Access

Summary. Objective assessment of tendon histomorphology, particularly in the context of tissue repair, requires comprehensive analyses of both cellular distribution and matrix architecture. Fourier Transform analyses of histological images collected with second harmonic generation (SHG-FT) technique provide objective, quantitative assessment of collagen fiber organization with high specificity. Concurrent nuclear staining allows simultaneous analyses of cell morphology and distribution. Introduction. Tendon injuries can be career-limiting in human and equine athletes, since the architectural organization of the tissues are lost in the course of fibrotic repair. Objective assessment of tendon repair is problematical, particularly in research addressing potential therapies. Fourier Transform analyses of histological images collected with second harmonic generation (SHG-FT) technique can provide objective, quantitative assessments of collagen fiber organization with high specificity. This study describes the use of SHG-FT with fluorescently-labelled tendon-derived cells (TDC) in an in-vivo model of equine tendinitis to assess the temporal and spatial effects of cell delivery on collagen fiber organization. Materials and methods. Collagenase-induced tendinitis was created in the mid-metatarsal region of one hindlimb superficial digital flexor tendons (SDFT) in two horses. SDFTs from two clinically normal adult horses and were also used as controls. Autogenous TDCs were isolated from the lateral digital extensor tendon of the contralateral hind limb. Four weeks post-collagenase injection, 10×10. 6. DiI-labeled TDCs were injected into the tendon lesions. Tendon samples were obtained for histologic evaluation following euthanasia, 2-weeks after cell injections. Tendon samples were cryo-sectioned to 25–30μ exposed to nuclear counter stains (DAPI and PI) and imaged immediately through a confocal microscope (Zeiss LSM 710) with a 2-photon laser source, to obtain backward SHG (bSHG) and forward SHG (fSHG) images. In addition, images with DiI and DAPI fluorescence were acquired using 500–550 nm (green) or 565–615 nm (orange) emission filters, respectively. Fourier analysis of the SHG images was carried out using imageJ software. Results. DiI-labeled TDCs could be imaged successfully under two-photon fluorescence concurrently with SHG imaging. This was possible because the excitation wavelength of the two-photon laser (780nm) and detection of emissions above 565nm do not interfere with the bSHG band (380–400nm). Images collected with bSHG included signals from DAPI-stained nuclei. In contrast, emissions from PI-labeled nuclei were acquired independently of SHG signals. The contrast generated by individual collagen fibers was higher in images collected with fSHG than bSHG. SHG-FT of fSHG images provided accurate assessment of collagen fiber orientation in repair tissue and normal tendon. Discussion/Conclusions. Objective assessment of collagen orientation, along with spatial distribution of cells within healing tendon serves as useful indices of healing. Injected DiI-labeled TDCs could be imaged successfully under two-photon fluorescence concurrently with SHG imaging. However, DiI fluorescence is susceptible to photo-bleaching during SHG acquisition. Use of an alternative nuclear counter stains, such as PI, that do not emit along with SHG signal should be considered to optimise data acquisition and support simultaneous analyses of collagen structure, cellular morphology and cell distribution. SHG-FT histologic analysis along with biochemical and biomechanical indices collectively provide comprehensive assessment of therapies for tendon repair


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XI | Pages 6 - 6
1 Apr 2012
Mullen M Pillai A Fogg Q Kumar CS
Full Access

Talar neck fractures are associated with high complication rates with significant associated morbidity. Adequate exposure and stable internal fixation remains challenging. We investigated the anterior extensile approach for exposure of these fractures and their fixation by screws introduced through the talo-navicular articulation. We also compared the quality and quantity of exposure of the talar neck obtained by this approach, with the classically described medial/lateral approaches. An anterior approach to the talus between the tibialis anterior and the extensor hallucis tendons protecting both the superficial and deep peroneal nerves was performed on 5 fresh frozen cadaveric ankles . The surface area of talar neck accessible was measured using an Immersion Digital Microscribe and analysed with Rhinoceros 3D graphics package. Standard antero-medial and antero –lateral approaches were also carried out on the same ankles, and similar measurements taken. Seven talar neck fractures underwent operative fixation using the anterior approach with parallel cannulated screws inserted through the talo-navicular joint. 3D mapping demonstrated that the talar surface area visible by the anterior approach (mean 1200sqmm) is consistently superior to that visible by either the medial or lateral approaches in isolation or in combination. Medial malleolar osteotomy does not offer any additional visualisation of the talar neck. 3D reconstruction of the area visualised by the three approaches confirms that the anterior approach provides superior access to the entirety of the talar neck. 5 male and 2 female patients were reviewed. All had anatomical articular restoration, and no wound problems. None developed non union or AVN. The anterior extensile approach offers superior visualisation of the talar neck in comparison to other approaches for anatomical articular restoration. We argue that this approach is safe, adequate and causes less vascular disruption