Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 80 - 80
23 Feb 2023
Bolam S Park Y Konar S Callon K Workman J Monk A Coleman B Cornish J Vickers M Munro J Musson D
Full Access

We hypothesised that diet-induced obesity (DIO) would result in inferior enthesis healing in a rat model of rotator cuff (RC) repair and that dietary intervention in the peri-operative period would improve enthesis healing. A total of 78 male Sprague-Dawley rats were divided into three weight-matched groups from weaning and fed either: control diet (CD), high-fat diet (HFD), or HFD until surgery, then CD thereafter (HF-CD). After 12 weeks, the left supraspinatus tendon was detached, followed by immediate surgical repair. At 2 and 12 weeks post-surgery, animals were culled, and RCs harvested for biomechanical and histological evaluation. Body composition and metabolic markers were assessed via DEXA and plasma analyses, respectively. DIO was established in the HFD and HF-CD groups before surgery and subsequently reversed in the HF-CD group after surgery. Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD groups compared with the CD group at 12 weeks after surgery, with semiquantitative scores of 6.2 (P<0.01), 4.98 (P<0.01), and 8.7 of 15, respectively. The repaired entheses in the HF-CD group had a significantly lower load to failure (P=0.03) at 12 weeks after surgery compared with the CD group, while the load to failure in the HFD group was low but not significantly different (P=0.10). Plasma leptin were negatively correlated with histology scores and load to failure at 12 weeks after surgery. DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring normal weight with dietary change after surgery did not improve healing outcomes. Circulating levels of leptin significantly correlated with poor healing outcomes. This pre-clinical rodent model demonstrates that obesity is a potentially modifiable factor that impairs RC healing and increases the risk of failure after RC surgery


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 71 - 71
1 Dec 2016
Smallman T Shekitka K Mann K Race A
Full Access

This study documents the gross and histologic structure of the infrapatellar plica, and fat pad, and adds to an earlier report to the COA. The important new findings are that the femoral attachment of the plica is an enthesis, and that the plica itself is. This study seeks to demonstrate that the structure of the fat pad (FP) and infrapatellar plica (IPP) is that of an enthesis organ. Twelve fresh frozen cadaver knees, each with an IPP, were dissected and the gross anatomic features recorded. The IPP and FP were harvested for study. Representative histologic sections were prepared on tissue fixed in 10% neutral buffered formalin, embedded in paraffin, cut at 4 microns on a rotatory microtome. Staining techniques included hematoxylin and eosin, Masson's trichrome, elastic stain and S100. Appropriate decalcification of sections of the femoral insertion of the IPP was performed. All sections were examined by light microscopy at low, medium and high power. IPP types included 8 separate, 1 split, 2 fenestrated, and one vertical septum. The origin of the IPP is a fibrous arc arising from the apex of the notch separate from the margin of the articular cartilage. This attachment site is the instant centreof rotation of the IPP and FP; they are thus not isometric. The central zone of the IPP consists of a mix of connective tissue types. Representative sections taken of the femoral attachment of the IPP display a transition zone between dense fibrillar collagen of the IPP, then fibrocartilage and cortical bone similar to a ligament attachment site or enthesis. The central plica histology is composed predominantly of dense regular connective tissue with variable clear space between the collagen bundles, and is thus ligamentous. There is abundant elastase staining throughout, as well as crimping of the collagen suggesting capacity for stretch. S100 staining demonstrates nerves around and in the substance of the IPP. The central body shows lobulated collections of mature adipose tissue admixed with loose connective tissue, containing abundant small peripheral nerves and vessels (all showing crimping and redundancy), merging with the dense fibrous tissue of the IPP. The FP is highly innervated, deformable, and fibro-fatty. Its histology shows lobules of fat, separated by connective tissue septa, which merge with the synovial areolar membrane surrounding the FP. The linked structures, IPP, central body, and FP occupy the anterior compartment, and function as an enthesis organ: the IPP tethers the FP via the central body and together they rotate around the femoral origin of the IPP. They are not isometric, and must stretch and relax with knee motion. The histology correlates with this requirement. The origin of the IPP is an enthesis, a new observation. Elastase staining, redundancy of vessels and nerves, crimping and redundancy of the dense connective tissue all reflect the requirement to deform. The fat pad merges with the central body, both highly innervated space fillers, tethered by the IPP, which is a non-isometric ligament, also containing nerves. The important clinical significance of these structures is that release of the IPP at the origin reuces or eliminates anterior knee pain in most


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 57 - 57
1 Jul 2020
Chevrier A Hurtig M Lacasse F Lavertu M Potter H Pownder S Rodeo S Buschmann M
Full Access

Surgical reattachment of torn rotator cuff tendons can lead to satisfactory clinical outcome but failures remain common. Ortho-R product is a freeze-dried formulation of chitosan (CS) that is solubilized in platelet-rich plasma (PRP) to form injectable implants. The purpose of the current pilot study was to determine Ortho-R implant acute residency, test safety of different implant doses, and assess efficacy over standard of care in a sheep model. The infraspinatus tendon (ISP) was detached and immediately repaired in 22 skeletally mature ewes. Repair was done with four suture anchors in a suture bridge configuration (n = 6 controls). Freeze-dried formulations containing 1% w/v chitosan (number average molar mass 35 kDa and degree of deacetylation 83%) with 1% w/v trehalose (as lyoprotectant) and 42.2 mM calcium chloride (as clot activator) were solubilized with autologous leukocyte-rich PRP and injected at the tendon-bone interface and on top of the repaired site (n = 6 with a 1 mL dose and n = 6 with a 2 mL dose). Acute implant residency was assessed histologically at 1 day (n = 2 with a 1 mL dose and n = 2 with a 2 mL dose). Outcome measures included MRI assessment at baseline, 6 weeks and 12 weeks, histopathology at 12 weeks and clinical pathology. MRI images and histological slides were scored by 2 blinded readers (veterinarian and human radiologist, and veterinarian pathologist) and averaged. The Generalized Linear Model task (SAS Enterprise Guide 7.1 and SAS 9.4) was used to compare the different groups with post-hoc analysis to test for pairwise differences. Ortho-R implants were detected near the enthesis, near the top of the anchors holes and at the surface of ISP tendon and muscle at 1 day. Numerous polymorphonuclear cells were recruited to the implant in the case of ISP tendon and muscle. On MRI, all repair sites were hyperintense compared to normal tendon at 6 weeks and only 1 out 18 repair sites was isointense at 12 weeks. The tendon repair site gap seen on MRI, which is the length of the hyperintense region between the greater tuberosity and tendon with normal signal intensity, was decreased by treatment with the 2 mL dose when compared to control at 12 weeks (p = 0.01). Histologically, none of the repair sites were structurally normal. A trend of improved structural organization of the tendon (p = 0.06) and improved structural appearance of the enthesis (p = 0.1) with 2 mL dose treatment compared to control was seen at 12 weeks. There was no treatment-specific effect on all standard safety outcome measures, which suggests high safety. Ortho-R implants (2 mL dose) modulated the rotator cuff healing processes in this large animal model. The promising MRI and histological findings may translate into improved mechanical performance, which will be assessed in a future study with a larger number of animals. This study provides preliminary evidence on the safety and efficacy of Ortho-R implants in a large animal model that could potentially be translated to a clinical setting


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 51 - 51
1 Aug 2020
Nau T Teuschl A Redl H
Full Access

Due to unsatisfactory results and reported drawbacks of anterior cruciate ligament (ACL) reconstruction new regenerative approaches based on tissue-engineering strategies are currently under investigation. It was the purpose of this study to determine if a novel silk fiber-based ACL scaffold is able to initiate osteointegration in the femoral and tibial bone tunnels under in vivo conditions. Furthermore we tested if the osteointegration process will be improved by intraoperatively seeding the scaffolds with the autologous stromal vascular fraction, an adipose-derived, stem cell-rich isolate from knee fat pads. In this controlled laboratory study, 33 sheep underwent ACL resection and were then randomly assigned to 2 experimental groups: ACL reconstruction with a scaffold alone and ACL reconstruction with a cell-seeded scaffold. Half of the sheep in each group were randomly chosen and euthanized 6 months after surgery and the other half at 12 months. To analyze the integration of the silk-based scaffold in the femoral and tibial bone tunnels, hard tissue histology and micro-computed tomography measurements were performed. The histological workup showed that in all treatment groups, with or without the application of the autologous stromal vascular fraction, an interzone of collagen fibers had formed between bone and silk-based graft. This collagen-fiber continuity partly consisted of Sharpey fibers, comparable with tendon-bone healing known for autografts and allografts. Insertion sites were more broad based at 6 months and more concentrated on the slightly protruding, bony knoblike structures at 12 months. Histologically, no differences between the treatment groups were detectable. Analysis of micro-computed tomography measurements revealed a significantly higher tissue density for the cell-seeded scaffold group as compared with the scaffold-alone group in the tibial but not femoral bone tunnel after 12 months of implantation. The novel silk fiber-based scaffold for ACL regeneration demonstrated integration into the bone tunnels via the formation of a fibrous interzone similar to allografts and autografts. Histologically, additional cell seeding did not enhance osteointegration. No significant differences between 6 and 12 months could be detected. After 12 months, there was still a considerable amount of silk present, and a longer observation period is necessary to see if a true ligament-bone enthesis will be formed


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 23 - 23
1 Nov 2015
Burkhead W
Full Access

Subscapularis repair and integrity after a primary total shoulder arthroplasty is critical for successful outcomes. One should be familiar with the 3 basic takedown and repair techniques commonly utilised. Subscapularis repair after reverse shoulder arthroplasty is not as critical and in some cases may be detrimental to return of external rotation strength and motion. Subscapularis tenotomy: The tendon is incised approximately 1 cm from the lesser tuberosity and an oblique incision is created from proximal lateral to distal medial stopping at the sentinel vessels. A combination of tendon-to-tendon figure of 8 sutures. Lesser tuberosity osteotomy: This approach is helpful not only in obtaining a bone-to-bone healing, but also in the exposure. Osteotomies range from a fleck of bone in patients with minimal deformity, to a C-shaped osteotomy including part of the head which facilitates exposure of the posterior glenoid. Despite an ability to document radiographic healing of the lesser tuberosity fragment, this technique does not prevent fatty infiltration of the subscapularis. Subscapularis Peel: This repair requires tendon healing to bone and probably incomplete, in most cases, reconstitution of a normal enthesis. External rotation can be gained by recessing the subscapularis insertion medially with the arm in external rotation. While bone-to-tendon sutures are the gold standard, augmentation of the sutures using a prosthesis as the anchor has led to the development of prostheses with multiple holes. Dual row repair of the tendon, however, may lead to medial rupture


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 170 - 170
1 Jan 2013
Elnikety S Pendegrass C Blunn G
Full Access

Introduction. Tendon injuries remain challenging, secondary healing and prolonged immobilisation result in suboptimal outcome. Previous study by our group showed that demineralised bone matrix (DBM) can result in faster healing of a tendon enthesis. The aim of this study is to test different ways augmenting tendon with DBM to enhance tendon repair and regeneration. Methods. DBM strips were prepared from tibias of mature ewes. Patella, patellar tendon and tibias were dissected and the distal 1 cm of the patellar tendon was excised. 4 models were designed;. Model-1, DBM strip was used to bridge the gap between the tendon and the tibial tuberosity. The DBM strip was stitched to the tendon using one bone anchor. Model-2, similar to model 1 with the use of 2 anchors. Model-3, similar to model 2, construct was off loaded by continuous thread looped twice through bony tunnels sited in the patella and in the tibial tuberosity. Model-4, similar to model 3 with 3 threads as off loading loop. All models were tested for pullout force and mode of failure. Results. The median failure force for model-1 (N=5) was 250N while for model-2 (N=5) was 290N. In model-3 and model-4 failure of the off loading loop was used as end point, 6 samples were tested in each model. Median failure force of model-3 was 767N and for model-4 was 934N. There was no statistical significance between model-1 and model-2 (p=0.249), however statistical significance was found between other models (p=< 0.006). Discussion. A study published in 1996 proved that cortical DBM can be used as ACL graft with evidence of ligamentisation. DBM provides a biologic scaffold with potential for use as ligament and tendon replacement. Our study shows that a tendon rupture can be augmented with DBM giving intial appropriate mechanical strength suitable for in-vivo use


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 99 - 99
1 Sep 2012
Thambyah A Zhao AL Vince K Broom N
Full Access

In the treatment of ligament injuries there has been much interest in the restoration of the actual ligament anatomy, and the extent to which the original enthesis may be re-established. This study therefore seeks to uncover new information on ligament microstructure and its insertion into bone. Five bovine medial collateral ligaments (MCL) and five ovine anterior cruciate ligaments (ACL) were used in this study. All ligaments were harvested with the femoral and tibial bony insertions still intact. The bone ends were clamped and the MCL stretched to about 10% strain while the ACL underwent a 90° twist. The entire ligament-bone system, under load, was fixed in 10% formalin solution for 12 hours, following which it was partially decalcified to facilitate microsectioning. Thin 30 ìm-thick sections of the ligament-bone interface and ligament midsubstance were obtained. Differential Interference Contrast (DIC) optical microscopy was used to image the ligament and bone microarchitecture in the prescribed states of strain. Fibre crimp patterns were examined for the prescribed loading condition and showed distinct sections of fibre recruitment. Transverse micro-imaging of the ligament showed a significant variation in the sub-bundle cross-sectional area, ranging from 100ìm to 800 ìm. Those bundles closer to the central long axis of the ligament were numerous and small, while moving towards the periphery, they were large and singular. Both classifications of entheses, direct and indirect, were observed in the MCL insertions into the femur and tibia respectively. Of interest was the indirect insertion where the macro-level view of the near parallel attachment of fibres to bone via the periosteum was revealed, at the microscale, to involve a gradually increasing orthogonal insertion of fibres. This unique transition occurred closer to the joint line. In the ACL the anterior-medial (AM) and posterior-lateral (PL) bundles were easily discernable. All insertions into bone for the ACL were of the direct type. Fibres were thus seen to transition through the four zones of gradual mineralization to bone. However the manner in which the AM and PL bundles insert into bone, and the lateral soft tissue transition between these two bundles, revealed a structural complexity that we believe is biomechanically significant. This ‘mechano-structural’ investigation, using novel imaging techniques, has provided new insights into the microstructure of the ligament bone system. The images presented from this study are aimed to aid new approaches for reconstruction, and provide a blue-print for the design of ligament-bone systems via tissue engineering