Introduction:.
Component impingement in total hip arthroplasty (THA) can cause implant damage or dislocation. Dual mobility (DM) implants are thought to reduce dislocation risk, but impingement on metal acetabular bearings may cause femoral component notching. We studied the prevalence of (and risk factors for) femoral notching with DM across two institutions. We identified 37 patients with minimum 1-year radiographic follow-up after primary (19), revision (16), or conversion (2) THA with 3 distinct DM devices between 2012 and 2017. Indications for DM included osteonecrosis, femoral neck fracture, concomitant spinal or neurologic pathology, revision or conversion surgery, and history of prosthetic hip dislocation. Most recent radiographs were reviewed and assessed for notching. Acetabular anteversion and abduction were calculated as per Widmer (2004). Records were reviewed for dislocations and reoperations.INTRODUCTION
METHODS
The causes for revision of primary total hip arthroplasty (THA) are various and quite well known. The developing use of dual-mobility THA (DM-THA) seems a relevant option to decrease the risk of instability. Due to lack of long-term follow-up, this innovative retentive concept is suspected to increase the risk of polyethylene (PE) wear. The aim of the study was to analyse the causes for DM-THA revision and assess whether or not its occurrence is different from that of fixed-standard (FS) THA, particularly for aseptic loosening or wear and/or osteolysis. The SoFCOT group conducted an observational prospective multicentre study from 1 January 2010 to 31 December 2011. Inclusion criteria comprised an exhaustive collection of 2044 first-revision THAs with 251 DM-THAs and 1793 FS-THAs. After excluding complications linked to patient factors (infection and periprosthetic fractures), we performed a matched case–control study (matching ratio 1:1) comparing two groups of 133 THAs.Introduction
Materials and methods
Background. Instability and dislocation are some of the most important postoperative complications and potential causes of failure that
Hip dislocation and recurrent instability continue to be a major cause of failure despite advances in materials to optimise offset and head size. The most common cause of revision after total hip arthroplasty (THA) remains recurrent dislocation (22.5%). Dislocation rates following revision THA are even higher than primary THA, and can be as high as 27%. Dual mobility acetabular components were introduced in 1974 by Bousquet to reduce dislocation risk and maintain the low friction concept introduced by Charnley.
Background:. Dual mobility components in total hip arthroplasty have been successfully in use in Europe for greater than 25 years. However, these implants have only recently obtained FDA approval and acceptance among North American arthroplasty surgeons. Both decreased dislocation rate and decreased wear rates have been proposed benefits of dual mobility components. These components have been used for primary total hip arthroplasty in patients at high risk for dislocation, total hip arthroplasty in the setting of femoral neck fracture, revision for hip instability, and revision for large metal-on-metal (MoM) hip articulation. The literature for the North American experience is lacking. Purpose:. We report indications, short term outcomes, and complications of a series of subjects who received dual mobility outcomes at one institution. Study Design:. Consecutive subjects who received
Introduction:. Microseparation has resulted in more than ten-fold increase in ceramic-on-ceramic and metal-on-metal bearing wear, and even fracture in a zirconia head [1–4]. However, despite the greater microseparation reported clinically for metal-on-polyethylene wear, less is known about its potential detrimental effects for this bearing couple. This study was therefore designed to simulate the effects of micromotion using finite element analysis and to validate computational predictions with experimental wear testing. Methods:. Experimental wear rates for low and highly crosslinked polyethylene hip liners were obtained from a previously reported conventional hip wear simulator study [5]. A finite element model of the wear simulation for this design was constructed to replicate experimental conditions and to compute the wear coefficients that matched the experimental wear rates. We have previous described out this method of validation for knee wear simulation studies [6,7]. This wear coefficient was used to predict wear in a Dual-Mobility hip component (Fig 1).