Background:.
Background. Revision surgery for failed metal-on-metal (MOM) total hip arthroplasty (THA) or hip resurfacing (HR) has been a challenge. Previous studies have reported high failure and complication rates, including dislocation, infection, aseptic loosening and lower patient satisfaction. Options for revision depend on the integrity and stability of the femoral and acetabular components. When both components fail, full revision is required; however, when the acetabular component remains well fixed and oriented, only the isolated femoral component revision can be performed.
Instability is the most common reason for revision after total hip arthroplasty (THA). Since THA requires arthrotomy of the hip and replacement with a femoral head that is smaller than the normal hip, instability following THA is always a potential concern. Many factors contribute to the development of instability after THA including: restoration of normal anatomy, implant design, component position, surgical approach and technique, and numerous patient related factors. Recently, the role of spinal mobility and deformity has been shown to have a significant effect on risk of dislocation after THA. The long held guidelines for component positioning or so called “safe zone” described by Lewinnek have also been questioned since most dislocations have been shown to occur in patients whose components are positioned within this “safe” range. In the early post-operative period, dislocation can occur prior to capsular and soft tissue healing if the patient exceeds their peri-operative range of motion limits. Closed reduction and abduction bracing for 6 weeks may allow for soft tissue healing and stabilization of the hip. It is important to try and identify the mechanism of dislocation since this can affect the technique of closed reduction, how the patient is braced following reduction and what may need to be addressed at the time of revision if dislocation recurs. Closed reduction and bracing may be effective in patients who have a previously well-functioning, stable THA who suffer a traumatic dislocation after the peri-operative period. Despite successful closed reduction, recurrent dislocation occurs in many patients and can be secondary to inadequate soft tissue healing, patient noncompliance or problems related to component positioning. Patients who incur more than 2 dislocations should be considered for revision surgery. Prior to revision surgery, an appropriate radiographic evaluation of the hip should be performed to identify any potential mechanical/kinematic issues that need to be addressed at the time of revision. Typically this involves plain radiographs, including a cross table lateral of the involved hip to assess acetabular version, but may also involve cross-sectional imaging to assess femoral version. Patients with soft tissue pseudotumors frequently have significant soft tissue deficiencies that are not amenable to component repositioning alone and require use of constrained or
BACKGROUND. The most common salvage of a failed metal-on-metal hip resurfacing is to remove both the femoral and acetabular resurfacing components and perform a total hip replacement. The other choices are to perform an acetabular or femoral only revision. A one or two piece acetabular component or a polyethylene bipolar femoral component that matches the retained metal resurfacing acetabular component is used. The considerations in favor of performing a one component resurfacing revision are maintaining the natural femoral head size, limiting the surgical effort for the patient and surgeon, and bone conservation. There are often favorable cost considerations with single component revision surgery. The reasons for femoral component revision are femoral neck fracture, femoral component loosening and an adverse reaction to metal wear debris. Performing a femoral component only revision requires a well fixed and well oriented acetabular component. Acetabular revision is most often performed for an adverse reaction to metal wear debris or loosening. METHODS. 81 acetabular revisions and 46 femoral revisions were evaluated 4 to 14 years after surgery. 83% of patients had their initial surgery at outside institutions. The mean age was 46 and 65% of patients were women. A two piece titanium backed polyethylene component was used in 44 patients and a one or two piece metal component was used in 37. A dual mobility femoral prosthesis mated to a retained metal acetabular component was used for the femoral revisions and no conversions to a metal-on-metal total hip replacement were performed. We selected polyethylene acetabular components for patients with adverse reactions to metal wear debris if their femoral component was less than 48 mm or if there was no matching metal acetabular component available for their femoral component. We used
Introduction. Postoperative dislocation remains a vexing problem for patients and surgeons following total hip arthroplasty (THA). It is the commonest reason for revision THA in the US. Dual mobility (DM) THA implants markedly decrease the risk of THA instability. However, DM implants are more expensive than those used for conventional THA. The purpose of this study was to perform a cost-effectiveness analysis of DM implants compared to conventional bearing couples for unilateral primary THA using a computer model-based evaluation. Methods. A state-transition Markov computer simulation model was developed to compare the cost-utility of dual mobility versus conventional THA for hip osteoarthritis from a societal perspective (Figure 1). The model was populated with health outcomes and probabilities from registry and published data. Health outcomes were expressed as quality-adjusted life years (QALYs). Direct costs were derived from the literature and from administrative claims data, and indirect costs reflected estimated lost wages. All costs were expressed in 2013 US dollars. Health and cost outcomes were discounted by 3% annually. The base case modeled a 65-year-old patient undergoing THA for unilateral hip osteoarthritis. A lifetime time horizon was analyzed. The primary outcome was the incremental cost-effectiveness ratio (ICER). The willingness-to-pay threshold was set at $100,000/QALY. Threshold, one-way, two-way, and probabilistic sensitivity analyses were performed to assess model uncertainty. Results. DM THA exhibited absolute dominance over conventional THA with lower accrued costs (US$45,960 versus $47,103) and higher accrued utility (12.08 QALY versus 11.84 QALY). The ICER was -$4,771/QALY, suggesting that DM THA is cost-saving compared to conventional THA. The cost threshold at which dual mobility implants were cost-ineffective was $25,000 (Figure 2), and the threshold at which DM implants ceased being cost-saving was $12,845. Sensitivity analyses demonstrated that the probability of intraprosthetic dislocation, primary THA utility, and age at index THA most influenced model results. In the probabilistic sensitivity analysis, 90% of model iterations resulted in cost savings for DM THA (Figure 3). Discussion.
Introduction. The large diameter mobile polyethylene liner of the dual mobility implant provides increased resistance to hip dislocation. However, a problem specific to the dual mobility system is intra-prosthetic dislocation (IPD), secondary to loss of the retentive rim, causing the inner head to dissociate from the polyethylene liner. We hypothesized that impingement of the polyethylene liner with the surrounding soft-tissue inhibits liner motion, thereby facilitating load transfer from the femoral neck to the liner and leading to loss of retentive rim over time. This mechanism of soft-tissue impingement with the liner was evaluated via cadaver experiments, and retrievals were used to assess polyethylene rim damage. Methods. Total hip arthroplasty was performed on 10 cadaver hips using 3D printed
Hip dislocation and recurrent instability continue to be a major cause of failure despite advances in materials to optimise offset and head size. The most common cause of revision after total hip arthroplasty (THA) remains recurrent dislocation (22.5%). Dislocation rates following revision THA are even higher than primary THA, and can be as high as 27%.
Total hip replacement can be performed through multiple surgical approaches including anterior, anterolateral, lateral, transtrochanteric, posterolateral, posterior and the two incision technique. The overwhelming majority of hip replacement surgery today is performed through a posterolateral approach and this approach certainly has many advantages. The posterolateral approach can be extended without difficulty, it is expeditious, has reduced blood loss, there is little muscle damage and recovery is rapid. The major disadvantage of the approach that has been cited is its increased dislocation rate which has become less of a problem with the advent of larger femoral heads and
The dual mobility hip incorporates a femoral head mated within a spherical polyethylene liner which also has an unconstrained outer articulation with a polished metal shell. An additional wear surface is introduced at the outer articulation, however, the mobility of the polyethylene insert does allow for femoral-neck/acetabular-insert impingement by allowing the insert to displace upon contact. We evaluated the wear performance of a dual mobility hip during abrasive and impingement conditions independently. Three abrasive conditions were evaluated; abraded acetabular cup, abraded femoral head, and both abraded cup and head. Two impingement conditions were evaluated; impingement of the unconstrained acetabular insert against the femoral neck, and acetabular-insert/femoral-neck impingement when the insert becomes immobilized at the outer articulation. Wear testing was conducted using a hip stimulator. The simulator applied physiologic loading with a maximum load of 2450 N and serum as the lubricant. Components were abraded at the pole according to a published method. Abraded samples were tested at 0° of inclination. The unconstrained impingement condition was created by adjusting the femoral neck angle to achieve impingement with 45° of acetabular inclination. Neck to liner impingement can occur at either the superior or inferior surface of the femoral neck, with subsequent impingement occurring randomly as the insert is allowed to re-align itself throughout testing. The fixed impingement conditions was created by locking the outer bearing through fixturing and inducing impingement as previously described.