Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 68 - 68
1 Mar 2021
AlFayyadh F Farii HA Farahdel L Turcotte R Frazer A
Full Access

The aim was to analyze the efficacy of zoledronic acid (ZA) versus denosumab in the prevention of pathological fractures in patients with bone metastases from advanced cancers by evaluating all available randomized controlled trials (RCTs) on this subject. A systematic search of electronic databases (PubMed and MEDLINE) was performed to identify all published RCTs comparing zoledronic acid with denosumab in prevention of pathological fractures in bone metastases. Risk of bias of the studies was assessed. The primary outcomes evaluated were pathological fractures. Four RCTs (7320 patients) were included. Denosumab was superior to ZA in reducing the likelihood of pathological fractures, when all tumour types were combined (OR 0.86, 95% CI [0.74, 0.99], p = 0.04). Denosumab was not significantly favoured over ZA in endodermal origin (breast and prostate) (OR 0.85, 95% CI [0.68, 1.05], p = 0.13) and mesodermal origin tumours (solid tumours and MM) (OR 0.87, 95% CI [0.71, 1.06], p = 0.16). Denosumab significantly reduces the likelihood of pathological fractures in comparison to ZA in patients with bone metastases. When pathological fractures were grouped by tumour origin (endodermal or mesodermal), there was no significant difference between denosumab and ZA. Further long-term studies are needed to confirm the effectiveness of these treatment regimens


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 76 - 76
1 Dec 2022
Eltit F Ng T Gokaslan Z Fisher C Dea N Charest-Morin R
Full Access

Giant cell tumors of bone (GCTs) are locally aggressive tumors with recurrence potential that represent up to 10% of primary tumors of the bone. GCTs pathogenesis is driven by neoplastic mononuclear stromal cells that overexpress receptor activator of nuclear factor kappa-B/ligand (RANKL). Treatment with specific anti-RANKL antibody (denosumab) was recently introduced, used either as a neo-adjuvant in resectable tumors or as a stand-alone treatment in unresectable tumors. While denosumab has been increasingly used, a percentage of patients do not improve after treatment. Here, we aim to determine molecular and histological patterns that would help predicting GCTs response to denosumab to improve personalized treatment. Nine pre-treatment biopsies of patients with spinal GCT were collected at 2 centres. In 4 patients denosumab was used as a neo-adjuvant, 3 as a stand-alone and 2 received denosumab as adjuvant treatment. Clinical data was extracted retrospectively. Total mRNA was extracted by using a formalin-fixed paraffin-embedded extraction kit and we determined the transcript profile of 730 immune-oncology related genes by using the Pan Cancer Immune Profiling panel (Nanostring). The gene expression was compared between patients with good and poor response to Denosumab treatment by using the nSolver Analysis Software (Nanostring). Immunohistochemistry was performed in the tissue slides to characterize cell populations and immune response in CGTs. Two out of 9 patients showed poor clinical response with tumor progression and metastasis. Our analysis using unsupervised hierarchical clustering determined differences in gene expression between poor responders and good responders before denosumab treatment. Poor responding lesions are characterized by increased expression of inflammatory cytokines as IL8, IL1, interferon a and g, among a myriad of cytokines and chemokines (CCL25, IL5, IL26, IL25, IL13, CCL20, IL24, IL22, etc.), while good responders are characterized by elevated expression of platelets (CD31 and PECAM), coagulation (CD74, F13A1), and complement classic pathway (C1QB, C1R, C1QBP, C1S, C2) markers, together with extracellular matrix proteins (COL3A1, FN1,. Interestingly the T-cell response is also different between groups. Poor responding lesions have increased Th1 and Th2 component, but good responders have an increased Th17 component. Interestingly, the checkpoint inhibitor of the immune response PD1 (PDCD1) is increased ~10 fold in poor responders. This preliminary study using a novel experimental approach revealed differences in the immune response in GCTs associated with clinical response to denosumab. The increased activity of checkpoint inhibitor PD1 in poor responders to denosumab treatment may have implications for therapy, raising the potential to investigate immunotherapy as is currently used in other neoplasms. Further validation using a larger independent cohort will be required but these results could potentially identify the patients who would most benefit from denosumab therapy


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 59 - 59
22 Nov 2024
Peterlin AA Gottlieb H Birch JM Jensen LK
Full Access

Aim. The osteolytic process of osteomyelitis is, according to textbooks, caused by increased osteoclast activity due to RANKL production by osteoblasts. However, recent findings contradict this theory. Therefore, the aim was to investigate, in a porcine osteomyelitis model, how osteolysis is affected by massive inflammation and RANKL blocking, respectively. In parallel, patients with chronic osteomyelitis, diabetes, foot osteomyelitis, and fracture related infections (FRI) were included for advanced histological analysis of osteolysis. Methods. In pigs, a tibial implant cavity was created and inoculated with 10. 4. CFU of Staphylococcus aureus: Group A (n=7). Group B (n=7); + 1cm. 3. spongostan into the cavity. Group C (n=4); + systemic Denosumab treatment. Spongostan was used as an avascular material to support bacterial growth and thus increase the inflammatory response. Denosumab treatment was administrated to suppress osteoclast activity by RANKL inhibition (as in osteoporotic patients). The volume of osteolysis was accessed by CT scans. Immunohistochemistry with antibodies towards Cathepsin K was used to identify osteoclasts within the bone lesions. Briefly, the number of Cathepsin K positive cells, i.e., both precursors and bone resorbing osteoclasts, respectively, were counted in 10 high power fields (400x). In total, 50 bone infection patients were included (Herlev Hospital). From each patient five parried samples were taken for histology and microbiology, respectively. Histopathology, CT osteolysis volume estimation, and molecular expression of osteoclasts and inflammatory markers are ongoing. One FRI patient was osteoporotic and treated with Denosumab for 6 years. Results. All pigs were confirmed infected in the implant cavity. The volume (2.41 ± 1.29cm. 3. ) of osteolysis was significantly increased in the spongostan group in comparison to Group A (1.24 ± 0.59 cm. 3. ) (p=0.04). Thereby, the spongostan group had bacteria deeper into the bone from the inoculation point. Sufficient Denosumab treatment, i.e. reduced serum Ca was seen in 3 pigs. None of the Denosumab treated pigs showed reduced osteolysis in comparison to Group A (1.42 ± 0.63 cm. 3. ). The Cathepsin K score of Group C was 17 (15-23 IQR) of precursor osteoclasts and 2 (0-2 IQR) of osteoclasts in Howship lacunae. The Denosumab treated patient showed substantial osteolysis and histological analysis confirmed acute inflammatory. Conclusions. Application of spongostan, i.e., bacterial host optimization and massive inflammation promotes osteolysis and local bacterial dissemination. Osteoclast blocking with Denosumab showed no impact on osteolysis. Elucidation of the pathophysiology causing bone loss in osteomyelitis is fundamental. However, the widely accepted osteoclast-based theory might not be the only relevant


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 63 - 63
1 Mar 2021
Bozzo A Deng J Bhasin R Deodat M Abbas U Wariach S Axelrod D Masrouha K Wilson D Ghert M
Full Access

Lung cancer is the most common cancer diagnosed, the leading cause of cancer-related deaths, and bone metastases occurs in 20–40% of lung cancer patients. They often present symptomatically with pain or skeletal related events (SREs), which are independently associated with decreased survival. Bone modifying agents (BMAs) such as Denosumab or bisphosphonates are routinely used, however no specific guidelines exist from the National Comprehensive Cancer Center or the European Society of Medical Oncologists. Perhaps preventing the formation of guidelines is the lack of a high-quality quantitative synthesis of randomized controlled trial (RCT) data to determine the optimal treatment for the patient important outcomes of 1) Overall survival (OS), 2) Time to SRE, 3) SRE incidence, and 4) Pain Resolution. The objective of this study was to perform the first systematic review and network meta-analysis (NMA) to assess the best BMA for treatment of metastatic lung cancer to bone. We conducted our study in accordance to the PRISMA protocol. We performed a librarian assisted search of MEDLINE, PubMed, EMBASE, and Cochrane Library and Chinese databases including CNKI and Wanfang Data. We included studies that are RCTs reporting outcomes specifically for lung cancer patients treated with a bisphosphonate or Denosumab. Screening, data extraction, risk of bias and GRADE were performed in duplicate. The NMA was performed using a Bayesian probability model with R. Results are reported as relative risks, odds ratios or mean differences, and the I2 value is reported for heterogeneity. We assessed all included articles for risk of bias and applied the novel GRADE framework for NMAs to rate the quality of evidence supporting each outcome. We included 132 RCTs comprising 11,161 patients with skeletal metastases from lung cancer. For OS, denosumab was ranked above zoledronic acid (ZA) and estimated to confer an average of 3.7 months (95%CI: −0.5 – 7.6) increased survival compared to untreated patients. For time to SRE, denosumab was ranked first with an average of 9.1 additional SRE-free months (95%CI: 4.0 – 14.0) compared to untreated patients, while ZA conferred an additional 4.8 SRE-free months (2.4 – 7.0). Patients treated with the combination of Ibandronate and systemic therapy were 2.3 times (95%CI: 1.7 – 3.2) more likely to obtain successful pain resolution, compared to untreated. Meta-regression showed no effect of heterogeneity length of follow-up or pain scales on the observed treatment effects. Heterogeneity in the network was considered moderate for overall survival and time to SRE, mild for SRE incidence, and low for pain resolution. While a generally high risk of bias was observed across studies, whether they were from Western or Chinese databases. The overall GRADE for the evidence underlying our results is High for Pain control and SRE incidence, and Moderate for OS and time to SRE. This study represents the most comprehensive synthesis of the best available evidence guiding pharmacological treatment of bone metastases from lung cancer. Denosumab is ranked above ZA for both overall survival and time to SRE, but both treatments are superior to no treatment. ZA was first among all bisphosphonates assessed for odds of reducing SRE incidence, while the combination of Ibandronate and radionuclide therapy was most effective at significantly reducing pain from metastases. Clinicians and policy makers may use this synthesis of all available RCT data as support for the use of a BMA in MBD for lung cancer


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 64 - 64
1 Mar 2021
Aoude A Lim Z Perera J Ibe I Griffin A Tsoi K Ferguson P Wunder J
Full Access

Benign aggressive tumors are common and can be debilitating for patients especially if they are in peri-articular regions or cause pathological fracture as is common for giant cell tumor of bone (GCT). Although GCT rarely metastasize, the literature reports many series with high rates of local recurrence, and evidence about which risk factors influence recurrence is lacking. This study aims to evaluate the recurrence rate and identify local recurrence risk factors by reviewing patient data from a single high-volume orthopedic oncology center. A retrospective analysis of all patients treated for GCT at a tertiary orthopedic oncology center was conducted. In total 413 patients were treated for GCT between 1989 and 2017. Multiple patient and tumour characteristics were analysed to determine if they influenced local recurrence including: age, gender, anatomical site, Campanacci stage, soft tissue extension, presence of metastasis, pathologic fractures, and prior local recurrence. Additional variables that were analysed included type of treatment (en bloc resection or aggressive intralesional curettage) and use of local adjuvants. The main outcome parameters were local recurrence- free survival, metastasis-free survival and complications. Patients treated with Denosumab were excluded from analysis given its recently documented association with high rates of local recurrence. “There were 63/413 local recurrences (15.3%) at a mean follow-up of 30.5 months. The metastatic rate was 2.2% at a mean 50.6 months follow-up and did not vary based on type of treatment. Overall complication rate of 14.3% was not related to treatment modality. Local recurrence was higher (p=0.019) following curettage (55/310; 17.7%) compared to resection (8/103; 7.8%) however, joint salvage was possible in 87% of patients (270/310) in the curettage group. Use of adjuvant therapy including liquid nitrogen, peroxide, phenol, water versus none did not show any effect on local recurrence rates (p= 0.104). Pathological fracture did not affect local recurrence rates regardless of treatment modality (p= 0.260). Local recurrence at presentation was present in 16.3% (58/356) patients and did not show any significance for further local recurrence (p= 0.396). Gender was not associated with local recurrence (p=0.508) but younger patient age, below 20 years (p = 0.047) or below 30 years (p = 0.015) was associated with higher local recurrence rates. GCT in distal radius demonstrated the highest rate of local recurrence at 31.6% compared to other sites, although this was not significant (p=0.098). In addition, Campanacci stage and soft tissue extension were not risk factors for recurrence. The overall GCT local recurrence rate was 15.3%, but varied based on the type of resection: 17.7% following joint sparing curettage compared to 7.8% following resection. Local recurrence was also higher with younger patient age (30 years or less) and in distal radius lesions. In addition, neither Campanacci stage, soft tissue extension or presence of a pathologic fracture affected local recurrence. Most patients with GCT can undergo successful curettage and joint sparing, while only a minority require resection +/− prosthetic reconstruction. Even in the presence of soft tissue extension or a pathologic fracture, most joints can be salvaged with curettage