Ankle fractures are the fourth most common fracture requiring surgical management. The
Abstract. Objectives. The study aims to determine whether an arthroscopic ligament reconstruction is necessary to relieve clinical ankle instability symptoms in patients with an MRI scan showing medial or lateral ligament tear. Methods. This was a single centre retrospective case series study of 25 patients with ankle instability and ligament tear on MRI scan who had undergone arthroscopic procedures from January 2015 to December 2018. Patients were followed up for an average period of 3 years postoperatively to check for any recurrence of symptoms. Results. Of the 25 patients, 23 had ATFL tear on MRI scan, and 2 had
The most important determinant in the treatment of malleolar fractures is stability. Stable fractures have an intact deep
Traditional screw fixation of the syndesmosis can be prone to malreduction. Suture button fixation however, has recently shown potential in securing the fibula back into the incisura even with intentional malreduction. Yet, if there is sufficient motion to aid reduction, the question arises of whether or not this construct is stable enough to maintain reduction under loaded conditions. To date, there have been no studies assessing the optimal biomechanical tension of these constructs. The purpose of this study was to assess optimal tensioning of suture button fixation and its ability to maintain reduction under loaded conditions using a novel stress CT model. Ten cadaveric lower limbs disarticulated at the knee were used. The limbs were placed in a modified external fixator frame that allows for the application of sustained torsional (5 Nm), axial (500 N) and combined torsional/axial (5Nm/500N) loads. Baseline CT scans of the intact ankle under unloaded and loaded conditions were obtaining. The syndesmosis and the
Purpose. The anterior inferior tibiofibular ligament (AiTFL) is the primary lateral ligamentous stabilizer of the ankle syndesmosis. Current syndesmosis repair techniques traverse the tibia and fibula, but do not anatomically reconstruct the AiTFL. We compared a novel AiTFL anatomic repair technique (ART) to rigid syndesmosis screw fixation (SCREW). Method. Twelve cadaveric below knee specimens were compared radiographically and using a biomechanical testing protocol. All specimens underwent a CT scan of the ankle joint prior to testing. Next, the AiTFL, interosseous membrane and