Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 106 - 106
1 Dec 2020
Thimmaiah R Ali O Mathur K
Full Access

The Hospital (Trust) guidelines generally recommend 40mg of Low molecular weight heparin (LMWH) twice daily (BD) for all patients over 100kg for those undergoing total hip (THR) and knee replacements (TKR) respectively. British National Formulary (BNF) recommends 40mg of LMWH once daily (OD) for all patients regardless of their overall weight or body mass index (BMI). We evaluated the outcome of prophylactic LMWH dosage for patients undergoing THR and TKR by monitoring surgery related venous-thromboembolic events up to a minimum of three months after surgery. A retrospective audit was carried out after obtaining institutional approval and all consecutive elective patients weighing over 100kg and undergoing THR and TKR were included. All patients were followed up for a minimum of 3 months after their operation to investigate the dose of prophylactic LMWH received, and whether they had developed any venous thromboembolic events (VTE) post operatively. This was done using a combination of electronic notes, drug charts and deep venous thrombosis (DVT) or computed tomography pulmonary angiogram (CTPA) reports on the hospital/trust database. A total of 53 patients underwent elective THR (18) and TKR (35) between the period of March 2017 and September 2017. Forty-four patients received 40 mg OD and 9 patients had 40 mg BD. None of the patients developed a confirmed DVT or pulmonary embolism in the 3 months following surgery regardless of the dose received. We demonstrate that there is no clinical benefit in having patients over 100kg on twice daily LMWH with the aim of preventing post-op thromboembolic complications. This conclusion is in line with the BNF recommendations for VTE prophylaxis


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_3 | Pages 15 - 15
1 Apr 2015
Brydone A Henderson F Allen D
Full Access

Since the establishment of our department a multi-modal approach to thromboprophylaxis that uses aspirin for chemical prophylaxis was adopted. In accordance with the latest national recommendations, our routine chemical prophylaxis following arthroplasty was changed to rivaroxaban in 2012 and then dalteparin in 2013. This study aimed to compare venous thromboembolism (VTE) rates during the use of the aspirin-based protocol used from 2004 to 2011 with recent, rivaroxaban and dalteparin-based guidelines. Outcome data from ISD Scotland was retrieved and radiology reports performed for CT pulmonary angiograms and lower limb doppler ultrasound scans in our institution were assessed to identify cases of VTE following primary hip or knee arthroplasty. The incidence of pulmonary embolism (PE) and proximal deep venous thrombosis (DVT) was calculated for each year and compared using a Chi-squared test. Additionally, the change in extended thromboprophylaxis regimen was surveyed by recording the discharge prescriptions for consecutive arthroplasty patients for March every year. There were 90 radiologically confirmed cases of DVT or PE between 2004 and 2011 (incidence of 0.71%). The DVT/PE rate was subsequently 0.67% in 2012 and 0.69% in 2013, with a further 29 cases identified. This does not represent a significant change in the venous thromboembolism rates and remains below the national incidence of VTE (1.06%). Aspirin alone was used as chemical thromboprophylaxis in 80.8% of patients from 2004 to 2011, 50.9% in 2012, and 12.1% in 2013. The incidence of VTE at our centre remains favourable to national figures, but the modification of thromboprophylaxis guidelines will incur additional financial costs and has not had a significant reduction on the rate of VTE


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 99 - 99
1 Jan 2017
Yabuno K Kanazawa M Sawada N
Full Access

The purpose of this study is to evaluate accuracy of tibia cutting and tibia implantation in UKA which used navigation system for tibia cutting and tibia component implantation, and to evaluate clinical results. We performed 72 UKAs using navigation system from November, 2012. This study of 72 knees included 56 females and 16 males with an average operation age of 74.2 years and an average body mass index (BMI) of 24.8 kg/m2. The diagnosis was osteoarthritis (OA) in 67 knees and osteonecrosis (ON) in 5 knees. The UKA (Oxford partial knee microplasty, Biomet, Warsaw, IN) was used all cases. We evaluated patients clinically using the Japanese orthopaedic association (JOA) score, range of motion (ROM), operation time, the amount of bleeding and complications. Patients were evaluated clinically at preoperation and final follow up in JOA score and ROM. As an radiologic examination, we evaluated preoperative and postoperative lower limb alignment in FTA (femoro-tibial angle) by weightbearing long leg antero-posterior alignment view X-rays. Also we evaluated a tibial component implantation angle by postoperative CT, and tibia cutting angle by intraoperative navigation system. We defined the tibial angle which a tibia functional axis and the tibia component made in coronal plane, also tibial posterior slope angle which a tibia axis and tibia component made in sagittal plane by CT. We measured tibial angle and tibial posterior slope angle by 3D template system. We performed UKA in all cases mini-midvastus approach. At first we performed osteotomy of the proximal medial tibia using CT-Free navigation. At this procedure we performed osteotomy to do re-cut if check did cutting surface in navigation, and there was cutting error (>3°), and then to do check again in navigation. Next we did not use navigation and went the osteotomy of the distal femur with an IM rod and drill guide of microplasty system. And then we performed a trial and decided bearing gap and moved to cementing. At first we went cementing of the tibia component. At this procedure we went to drive implant again if check did implant surface in navigation, and there was implantation error(>3°), and to do check. We checked did tibia cutting, tibia implantation carefully in navigation. In addition, We sterilize a clips and use it came to be in this way possible for the check of the first osteotomy side exactly. ROM was an average of 122.7° of preoperation became an average of 128.2° at final follow up, and JOA score was an average of 50.5 points of preoperation improved an average of 86.6 points at final follow up after UKA. An average of the operation time was 94 minutes, an average of the amount of bleeding was 137.7ml, and complications were one proximal type deep venous thrombosis (DVT) and one pin splinter joining pain by navigation, .Asetic loosening(tibial component) was one case, and this conversed the TKA. In the radiologic evaluation, FTA was an average of 182.1° of preoperation corrected an average of 175.9°after UKA. In other words, an average of 6.2° were corrected by UKA. The tibia component implantation angle was an average of 90.18° in a measurement by the CT after UKA, intoraoperative tibia component implantation angle was an average of 90.32° in a measurement by the navigation system. These two differences did not accept the significant difference at an average of 1.33°.(P=0.5581). Similarly, the posterior slope angle were as follow; average of 5.65°by CT and average of 5.75°by navigation. These two differences did not accept the significant difference at an average of 1.33°. (P=0.6475). Discussion: We performed UKA using navigation and evaluated the implantation accuracy for tibia osteotomy, tibia implantation. They were good alignment with an average of 90.18°, and outliers more than 3° were two cases(2.8%). It will be necessary to examine long-term progress including clinical results complications in future. We are performed UKA now in femur side using PSI(patient specific instruments) and tbia side using Navigation