Advertisement for orthosearch.org.uk
Results 1 - 20 of 27
Results per page:
Bone & Joint Research
Vol. 12, Issue 2 | Pages 133 - 137
10 Feb 2023
Liao H Tsai C

Aims. To investigate the correlations among cytokines and regulatory T cells (T-regs) in ankylosing spondylitis (AS) patients, and their changes after anti-tumour necrosis factor-α (TNF-α) treatment. Methods. We included 72 AS patients with detailed medical records, disease activity score (Bath Ankylosing Spondylitis Disease Activity Index), functional index (Bath Ankylosing Spondylitis Functional Index), and laboratory data (interleukin (IL)-2, IL-4, IL-10, TNF-α, interferon (IFN)-γ, transforming growth factor (TGF)-β, ESR, and CRP). Their peripheral blood mononuclear cells (PBMCs) were marked with anti-CD4, anti-CD25, and anti-FoxP3 antibodies, and triple positive T cells were gated by flow cytometry as T-regs. Their correlations were calculated and the changes after anti-TNF-α therapy were compared. Results. The frequency of T-regs in PBMCs was positively correlated to ESR and CRP in AS (r = 0.35 and 0.43; p = 0.032 and 0.027, respectively), and there was also a significant correlation between serum level of TNF-α and CRP (p = 0.041). The frequency of T-regs in PBMCs positively correlated to serum levels of TNF-α, IL-10, and TGF-β, while IL-2, IL-4, and IFN-γ showed opposite results. After anti-TNF-α treatment, there were significantly lower serum levels of TNF-α, IL-10, TGF-β, and frequency of T-regs in PBMCs among these AS patients (p = 0.026, 0.032, 0.029, and 0.037, respectively). Conclusion. In AS patients, proinflammatory cytokine may give positive feedback to induce more T-reg production and anti-inflammatory cytokine secretion to suppress this inflammatory status, and they can be reversed by anti-TNF-α therapy. However, the detailed interactions among T-regs and complex cytokine networks in autoinflammatory diseases still need more studies and further functional assay. Cite this article: Bone Joint Res 2023;12(2):133–137


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 16 - 16
1 Oct 2022
Nüesch A Alexopoulos L Kanelis E Williams F Geris L Gantenbein B Lacey M Le Maitre C
Full Access

Objectives. This study aims to investigate whether bacteria are present in intervertebral discs (IVDs) and their influence. Causality between chronic infection of the IVD and its degenerative process gained great interest recently. Granville Smith et al. (2021) identified 36 articles from 34 research studies investigating bacteria in IVDs, from these 27 studies found, Cutibacterium acnes being the most abundant. However, whether bacteria identified were present in vivo or if they represent contamination remains unclear. Methods. Human IVD tissue was fixed in paraffin and Immunohistochemical stained for Gram-positive bacteria. NP cells in monolayer have been stimulated with LPS (0.1–50 µg/ml) and Peptidoglycan (0.1–50 µg/ml) for 24, 48 and 72 hrs to investigate their influence. The concentration of proinflammatory and catabolic cytokines in the media is being measured using ELISA. RNA extracted and RT-qPCR utilised for factors associated with disc degeneration matrix genes, matrix degrading enzymes, cytokines, neurotrophic factors and angiogenic factors. Results. Bacteria were detected within IVD tissue. Bacteria was internalized by the NP cells and influenced the nuclei morphology. Preliminary results of the exposure of NP cells to bacterial components demonstrate that ADAMTS4 as well as IL-8 were showed an increase in gene expression after LPS and peptidoglycan treatment compared to the non-treated control. Underlining these results, IL-8 protein was increased in treated groups, whereas peptidoglycan treated groups showed a dose dependence. Conclusion. This study demonstrates that Gram positive bacteria are present within the IVD. The exposure of NP cells to peptidoglycans indicates that bacterial components trigger a stress response. Conflicts of Interest: No conflict of interest. Sources of Funding: This project is part of the Disc4All Training network to advance integrated computational simulations in translational medicine, applies to intervertebral disc degeneration and funded by Horizon 2020 (H2020-MSCA-ITN-ETN-2020 GA: 955735)


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 39 - 39
1 Sep 2019
Daneshnia Y Snuggs J Scott A Le Maitre C
Full Access

Background. Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP). Degenerate discs are associated with accelerated cellular senescence. Cell senescence is associated with a secretory phenotype characterised by increased production of catabolic enzymes and cytokines. However to date, the mechanism of cell senescence within disc degeneration is unclear. Senescence can be induced by increased replication or induced by stress such as reactive oxygen species or cytokines. This study investigated the association of cellular senescence with markers of DNA damage and presence of cytoplasmic DNA (which in cancer cells has been shown to be a key regulator of the secretory phenotype), to determine mechanisms of senescence in disc degeneration. Methods and Results. Immunohistochemistry for the senescence marker: p16. INK4A. was firstly utilised to screen human intervertebral discs for discs displaying at least 30% immunopostivity. These discs were then subsequently analysed for immunopostivity for DNA damage markers γH2AX and cGAS and the presence of cytoplasmic DNA. The number of immunopositive cells for p16. INK4A. positively correlated with the expression of γH2AX and cGAS. Senescent cells were also associated with the presence of cytoplasmic DNA. Conclusions. These new findings elucidated a role of cGAS and γH2AX as a link from genotoxic stress to cytokine expression, which is associated with senescent cells. The findings indicate that cellular senescence in vivo is associated with DNA damage and presence of cytoplasmic DNA. Whether this DNA damage is a result of replicative senescence or stress induced is currently being investigated in vitro. No conflicts of interest. Sources of funding: Funded by ARUK and MRC


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_10 | Pages 24 - 24
1 May 2017
Snuggs J Chiverton N Cole A Michael R Bunning R Conner M Le Maitre C
Full Access

Introduction. Within the intervertebral disc (IVD), nucleus pulposus (NP) cells reside within a unique microenvironment. Factors such as hypoxia, osmolality, pH and the presence of cytokines all dictate the function of NP cells and as such the cells must adapt to their environment to survive. Previously we have identified the expression of aquaporins (AQP) within human IVD tissue. AQPs allow the movement of water across the cell membrane and are important in cellular homeostasis. Here we investigated how AQP gene expression was regulated by the microenvironment of the IVD. Methods. Human NP cells were cultured in alginate beads prior to cytokine, osmolality, pH and hypoxia treatments and subsequent RT-qPCR to assess regulation of AQP gene expression. Results. Physiological conditions observed within the native IVD regulated AQP gene expression in human NP cells. Hyperosmotic treatment up-regulated the expression of AQP1 and 5 during hypoxic conditions, whereas AQP4 expression was down-regulated. During hypoxia and physiological pH treatments AQP5 expression was increased. Pro-inflammatory cytokines, increased during IVD degeneration, also altered AQP gene expression. Interleukin-1β (IL-1β) decreased expression of AQP1 and 3 yet up-regulated AQP9, interleukin-6 (IL-6) increased expression of AQP1, 3, and 9 and tumour necrosis factor α (TNFα) upregulated the gene expression of both AQP2 and 9. Conclusion. The microenvironment in which NP cells reside in vivo directly contributes to their correct function and survival. AQP gene expression was differentially regulated under healthy compared to degenerate conditions; this potentially highlights that during IVD degeneration NP cells differentially express AQPs. No conflicts of interest. Funded by BMRC, Sheffield Hallam University


Bone & Joint Research
Vol. 12, Issue 3 | Pages 189 - 198
7 Mar 2023
Ruiz-Fernández C Ait Eldjoudi D González-Rodríguez M Cordero Barreal A Farrag Y García-Caballero L Lago F Mobasheri A Sakai D Pino J Gualillo O

Aims

CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration.

Methods

We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary annulus fibrosus (AF) cells and in the human nucleus pulposus (NP) immortalized cell line HNPSV-1. We determined messenger RNA (mRNA) and protein levels of relevant factors involved in inflammatory responses, by quantitative real-time polymerase chain reaction (RT-qPCR) and western blot. We also studied the presence of mCRP in human AF and NP tissues by immunohistochemistry.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 522 - 535
4 Sep 2023
Zhang G Li L Luo Z Zhang C Wang Y Kang X

Aims

This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD).

Methods

The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 21 - 21
1 Oct 2019
Binch A Richardson S Hoyland J Barry F
Full Access

Background. Mesenchymal stem cells (MSCs) are undergoing evaluation as a potential new therapy for immune and inflammatory-mediated conditions such as IVD degeneration (IDD). Both adipose (ASCs) and bone-marrow (BMSCs) derived MSCs have been widely used in this regard. The optimal tissue source and expansion conditions required to exploit the regenerative capacity of these cells are not yet fully elucidated. In addition the phenotypic response of transplanted cells to the disease environment is not well understood. In this study, ASCs and BMSCs were exposed to a combination of hypoxic conditioning and selected inflammatory mediators, conditions that mimic the microenvironment of the degenerate IVD, in an effort to understand their therapeutic potency for in vivo administration. Methods and Results. Donor-matched ASCs and MSCs were pre-conditioned with either IL-1β (10ng/ml) or TNFα (10ng/ml) for 48 hours under hypoxic conditions (5% O. 2. ). Conditioned media was collected and 45 different immunomodulatory proteins were analysed using human magnetic Luminex® assay. Secreted levels of several key cytokines and chemokines, both pro- and anti-inflammatory, were significantly upregulated in ASCs and BMSCs following the conditioning regime. Under all conditions tested, ASCs expressed significantly higher levels of IL-4, IL-6, IL-10, IL-12, TGF-α, and GCSF compared to BMSCs. Pre-conditioning with TNFα resulted in significantly higher levels of IL-10 while preconditioning with IL-1β resulted in higher levels of IL-6, IL-12 and GCSF. Conclusion. These data suggest that pre-conditioned ASCs may have enhanced therapeutic potential in modulating IVD repair through the increased release of trophic factors that play a role in immunomodulation. Conflicts of interest: None. Sources of funding: Financial support for this research was provided by EU Horizon 2020 RESPINE grant (Project ID# 732163)


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 30 - 30
1 Oct 2019
Snuggs J Rustenberg C Emanuel K Partridge S Sammon C Smit T Le Maitre C
Full Access

Purpose of study and background. Low back pain affects 80% of the population at some point in their lives with 40% of cases attributed to intervertebral disc (IVD) degeneration. A number of potential regenerative approaches are under investigation worldwide, however their translation to clinic is currently hampered by an appropriate model for testing prior to clinical trials. Therefore, a more representative large animal model for IVD degeneration is needed to mimic human degeneration. Here we investigate a caprine IVD degeneration model in a loaded disc culture system which can mimic the native loading environment of the disc. Methods and Results. Goat discs were excised and cultured in a bioreactor under diurnal, simulated-physiological loading (SPL) conditions, following 3 days pre load, IVDs were degenerated enzymatically for 2hrs and subsequently loaded for 10 days under physiological loading. A PBS injected group was used as controls. Disc deformation was continuously monitored and changes in disc height recovery quantified using stretched-exponential fitting. Histological staining was performed on caprine discs to assess extracellular matrix production and immunohistochemistry performed to determine expression of catabolic protein expression. The injection of collagenase and cABC induced mechanical behavior akin to that seen in human degeneration. A decrease in collagens and glycosaminoglycans (GAGs) was seen in enzyme injected discs, which was accompanied by increased cellular expression for degradative enzymes and catabolic cytokines. Conclusion. This model provides a reproducible model of IVD degeneration which mimics human degeneration. This model allows the testing of biomaterials and other potential treatments of IVD degeneration on a scale more representative of the human disc. There are no conflicts of interest. Funded by MRC and Versus Arthritis


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 22 - 22
1 Oct 2019
Snuggs J Thorpe A Hutson C Partridge S Chiverton N Cole A Sammon C Le Maitre C
Full Access

Purpose of study and background. IVD degeneration is a major cause of Low back pain. We have previously reported an injectable hydrogel (NPgel), which induces differentiation of human MSCs to disc cells and integrates with NP tissue following injection in vitro. However, the translation of this potential treatment strategy into clinic is dependent on survival and differentiation of MSCs into disc cells within the degenerate IVD. Here, we investigated the viability and differentiation of hMSCs incorporated into NPgel cultured under conditions mimicking the healthy and degenerate microenvironment of the disc. Methods and Results. MSCs were cultured in NP gel under 5% O. 2. in either: standard culture (DMEM, pH7.4); healthy disc (DMEM, pH7.1); degenerate disc (low glucose DMEM, pH6) or degenerate disc plus IL-1β. Following 4 weeks histological staining and immunohistochemical analysis investigated viability, ECM synthesis and matrix degrading enzyme expression. Here we have shown that viability and NP cell differentiation of MSCs incorporated within NPgel was mostly unaffected by treatment with conditions such as low glucose, low pH and the presence of cytokines, all regarded as key contributors to disc degeneration. In addition, the NPgel was shown to prevent MSCs from displaying a catabolic phenotype with low expression of degradative enzymes, highlighting the potential of NPgel to differentiate hMSCs and protect them from the degenerate disc microenvironment. Conclusion. The NPgel described here not only has the potential to provide mechanical support and deliver MSCs for regeneration of the IVD but also may simultaneously function to protect delivered hMSCs from the catabolic environment in the degenerate IVD. C Le Maitre and C Sammon hold a patent for the hydrogel described. Funded by MRC and Versus Arthritis


Bone & Joint Research
Vol. 12, Issue 1 | Pages 80 - 90
20 Jan 2023
Xu J Si H Zeng Y Wu Y Zhang S Liu Y Li M Shen B

Aims

Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive.

Methods

Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 6 - 6
1 Oct 2019
Davies K Richardson S Milner C Hoyland J
Full Access

Background. Degeneration of the intervertebral disc (IVD) is a leading cause of lower back pain, and a significant clinical problem. Inflammation mediated by IL-1β and TNF-α drives IVD degeneration through promoting a phenotypic switch in the resident nucleus pulposus (NP) cells towards a more catabolic state, resulting in extracellular matrix degradation. Bone marrow mesenchymal stem cells (MSCs) produce bioactive factors that modulate local tissue microenvironments and their anti-inflammatory potential has been shown in numerous disease models. Thus MSCs offer a potential therapy for IVD degeneration. In a clinical setting, adipose-derived stem cells (ASCs) might represent an alternative and perhaps more appealing cell source. However, their anti-inflammatory properties remain poorly understood. Methods. Here we assess the anti-inflammatory properties of donor-matched human ASCs and MSCs using qPCR and western blotting. Results. We demonstrate that stimulating ASCs or MSCs with IL-1β and/or TNF-α elicits a strong anti-inflammatory response with increased expression of IL-1 receptor antagonist (IL-1Ra), cyclooxygenase-2 (COX-2) and the tissue protective protein tumour-necrosis factor stimulated gene-6 (TSG-6). ASCs produced significantly higher levels of IL-1Ra and TSG-6 than their matched MSCs at both gene and protein levels, indicating that ASCs are potentially a more potent anti-inflammatory cell type. This anti-inflammatory response was also observed upon co-culture with degenerate NP cells without exogenous cytokine. Signalling analyses suggested this difference between cell types might be mediated through differences in the activation of inflammation-associated transcription factors. Conclusion. These data indicate that the anti-inflammatory properties of ASCs may be useful in developing future therapies for IVD degeneration. No conflicts of interest. Sources of funding: EPSRC-MRC Centre for Doctoral Training in Regenerative Medicine (EP/L014904/1)


Bone & Joint Research
Vol. 12, Issue 3 | Pages 202 - 211
7 Mar 2023
Bai Z Shou Z Hu K Yu J Meng H Chen C

Aims

This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect.

Methods

This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis.


Bone & Joint Research
Vol. 12, Issue 6 | Pages 387 - 396
26 Jun 2023
Xu J Si H Zeng Y Wu Y Zhang S Shen B

Aims

Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease.

Methods

We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes.


Bone & Joint Open
Vol. 3, Issue 5 | Pages 348 - 358
1 May 2022
Stokes S Drozda M Lee C

This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1067 - 1072
1 Sep 2022
Helenius L Gerdhem P Ahonen M Syvänen J Jalkanen J Charalampidis A Nietosvaara Y Helenius I

Aims

The aim of this study was to evaluate whether, after correction of an adolescent idiopathic scoliosis (AIS), leaving out the subfascial drain gives results that are no worse than using a drain in terms of total blood loss, drop in haemoglobin level, and opioid consumption.

Methods

Adolescents (aged between 10 and 21 years) with an idiopathic scoliosis (major curve ≥ 45°) were eligible for inclusion in this randomized controlled noninferiority trial (n = 125). A total of 90 adolescents who had undergone segmental pedicle screw instrumentation were randomized into no-drain or drain groups at the time of wound closure using the sealed envelope technique (1:1). The primary outcome was a drop in the haemoglobin level during first three postoperative days. Secondary outcomes were 48-hour postoperative oxycodone consumption and surgical complications.


The Bone & Joint Journal
Vol. 104-B, Issue 6 | Pages 715 - 720
1 Jun 2022
Dunsmuir RA Nisar S Cruickshank JA Loughenbury PR

Aims

The aim of the study was to determine if there was a direct correlation between the pain and disability experienced by patients and size of their disc prolapse, measured by the disc’s cross-sectional area on T2 axial MRI scans.

Methods

Patients were asked to prospectively complete visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores on the day of their MRI scan. All patients with primary disc herniation were included. Exclusion criteria included recurrent disc herniation, cauda equina syndrome, or any other associated spinal pathology. T2 weighted MRI scans were reviewed on picture archiving and communications software. The T2 axial image showing the disc protrusion with the largest cross sectional area was used for measurements. The area of the disc and canal were measured at this level. The size of the disc was measured as a percentage of the cross-sectional area of the spinal canal on the chosen image. The VAS leg pain and ODI scores were each correlated with the size of the disc using the Pearson correlation coefficient (PCC). Intraobserver reliability for MRI measurement was assessed using the interclass correlation coefficient (ICC). We assessed if the position of the disc prolapse (central, lateral recess, or foraminal) altered the symptoms described by the patient. The VAS and ODI scores from central and lateral recess disc prolapses were compared.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_10 | Pages 25 - 25
1 May 2017
Vickers L Thorpe A Sammon C Le Maitre C
Full Access

Introduction. Current strategies to treat back pain address the symptoms but not the underlying cause. Here we are investigating a novel hydrogel material (NPgel) which can promote MSC differentiation to Nucleus pulposus cells. Current in vitro studies have only explored conditions that mimic the native disc microenvironment. Here, we aim to determine the stem cells regenerative capacity under conditions that mimic the degenerate environment seen during disc degeneration. Methods. hMSCs were encapsulated in NPgel and cultured for 4 weeks under hypoxia (5%) with ± calcium (2.5mM and 5.0mM CaCl. 2. ), IL-1β and TNFα either individually or in combination to mimic the degenerate microenvironment. Cell viability was assessed by Alamar blue assay. Histological and immunohistochemical analysis investigated altered matrix and matrix degrading enzyme expression. Results. Viability of hMSCs was maintained under all culture conditions. Matrix deposition of glycosaminoglycans were observed under all conditions, MMP13 expression was upregulated by calcium but not by pro-inflammatory cytokines IL-1β and TNFα. Conclusions. We are developing an in vitro modelling system which can be used to test novel therapies within a degenerate microenvironment. Interestingly, our preliminary findings suggest calcium is a major contributor to regulating MMP13 in this model system. Investigating the degenerate niche will identify targets for inhibition to provide the correct niche to promote regeneration of the IVD. No conflict of interest. Funding: BMRC, MERI Sheffield Hallam University, for joint funding the Daphne Jackson Trust fellowship


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 2 | Pages 196 - 201
1 Mar 2002
Burke JG Watson RWG McCormack D Dowling FE Walsh MG Fitzpatrick JM

Herniated intervertebral disc tissue has been shown to produce a number of proinflammatory mediators and cytokines, but there have been no similar studies using discs from patients with discogenic low back pain. We have compared the levels of production of interleukin-6 (IL-6), interleukin-8 (IL-8) and prostaglandin E. 2. (PGE. 2. ) in disc tissue from patients undergoing discectomy for sciatica (63) with that from patients undergoing fusion for discogenic low back pain (20) using an enzyme-linked immunoabsorbent assay. There was a statistically significant difference between levels of production of IL-6 and IL-8 in the sciatica and low back pain groups (p < 0.006 and p < 0.003, respectively). The high levels of proinflammatory mediator found in disc tissue from patients undergoing fusion suggest that production of proinflammatory mediators within the nucleus pulposus may be a major factor in the genesis of a painful lumbar disc


Bone & Joint Research
Vol. 9, Issue 5 | Pages 225 - 235
1 May 2020
Peng X Zhang C Bao J Zhu L Shi R Xie Z Wang F Wang K Wu X

Aims

Inflammatory response plays a pivotal role in the pathophysiological process of intervertebral disc degeneration (IDD). A20 (also known as tumour necrosis factor alpha-induced protein 3 (TNFAIP3)) is a ubiquitin-editing enzyme that restricts nuclear factor-kappa B (NF-κB) signalling. A20 prevents the occurrence of multiple inflammatory diseases. However, the role of A20 in the initiation of IDD has not been elucidated. The aim of the study was to investigate the effect of A20 in senescence of TNF alpha (TNF-α)-induced nucleus pulposus cells (NPCs).

Methods

Immunohistochemical staining was performed to observe the expression of A20 in normal and degenerated human intervertebral discs. The NPCs were dissected from the tail vertebrae of healthy male Sprague-Dawley rats and were cultured in the incubator. In the experiment, TNF-α was used to mimic the inflammatory environment of IDD. The cell viability and senescence were examined to investigate the effect of A20 on TNF-α-treated NPCs. The expression of messenger RNA (mRNA)-encoding proteins related to matrix macromolecules (collagen II, aggrecan) and senescence markers (p53, p16). Additionally, NF-κB/p65 activity of NPCs was detected within different test compounds.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 48 - 48
1 Jun 2012
Moreau A Yuan Q Akoume M Karam N Taheri M Bouhanik S Rompre P Bagnall K Labelle H Poitras B Rivard C Grimard G Parent S
Full Access

Introduction. From the many human studies that attempt to identify genes for adolescent idiopathic scoliosis (AIS), the view emerging is that AIS is a complex genetic disorder with many predisposing genes exhibiting complex phenotypes through environmental interactions. Although advancements in genomic technology are transforming how we undertake genetic and genomic studies, only some success has been reached in deciphering complex diseases such as AIS. Moreover, the present challenge in AIS research is to understand the causative and correlative effects of discovered genetic perturbations. An important limitation to such investigations has been the absence of a method that can easily stratify patients with AIS. To overcome these challenges, we have developed a functional test that allows us to stratify patients with AIS into three functional subgroups, representing specific endophenotypes. Interestingly, in families with multiple cases of AIS, a specific endophenotype is shared among the affected family members, indicating that such a transmission is inherited. Moreover, increased vulnerability to AIS could be attributable to sustained exposure to osteopontin (OPN), a multifunctional cytokine that appears to be at the origin of the Gi-coupled receptor signalling dysfunction discovered in AIS. We examined the molecular expression profiles of patients with AIS and their response to OPN. Methods. Osteoblasts isolated from patients with AIS were selected for each functional subgroup and compared with osteoblasts obtained from healthy matched controls. We used the latest gene chip human genome array Affymetrix (HuU133 Plus 2.0 array) that allows for the analysis of the expression level of 38 000 well characterised human genes. Raw data were normalised with robust multiarray analysis method. Statistical analysis was done by the EB method with FlexArray software. Selection criteria for in-depth analysis include the magnitude of change in expression (at least □} 3-fold) and 5% false discovery rate as stringency selection. Validation of selected candidate genes was done by qPCR and at the protein level by Western blot and ELISA methods. Plasma OPN concentrations were measured by ELISA on a group of 683 consecutive patients with AIS and were compared with 262 healthy controls and 178 asymptomatic offspring, born from at least one scoliotic parent, and thus considered at risk of developing the disorder. The regulation of OPN signalling pathway in normal and AIS cells were validated in vitro by cellular dielectric spectroscopy (CDS). Results. Of 38 000 human genes tested, we have found eight genes specifically associated with the functional subgroup 1, 16 genes with the functional subgroup 2, and 11 genes with the functional subgroup 3. Interestingly, only 19 genes were shared and affected to the same extent in all AIS functional subgroups exhibiting a similar curve pattern (double major), suggesting their role in the formation of this curve pattern. Indeed, most of these genes encode for regulatory proteins such as transcription factors regulating axial skeleton, somite development, and extracellular matrix proteins. Mean plasma OPN concentrations were significantly increased in patients with AIS and correlated with disease severity. Increased plasma OPN concentrations were also detected in the asymptomatic at-risk group, suggesting that these changes precede scoliosis onset. CDS experiments clearly showed that OPN exposure triggers a Gi-coupled receptor signalling dysfunction, which is exacerbated by oestrogens. Conclusions. Our data further support our functional method of stratification of patients with AIS and allow the identification of genes triggering scoliosis onset versus those predisposing to the development of a specific curve pattern. Furthermore, our clinical and experimental data show that OPN is essential for scoliosis onset and curve progression, thus offering a first molecular concept to explain the pathomechanism leading to the asymmetrical growth of the spine in AIS. Acknowledgments. This research project was supported by grants from La Fondation Yves Cotrel de l'Institut de France, Canadian Institutes of Health Research, and Paradigm Spine LLC