In the last years, 3d printing has progressively grown and it has reached a solid role in clinical practice. The main applications brought by 3d printing in orthopedic surgery are: preoperative planning, custom-made surgical guides, custom-made im- plants, surgical simulation, and bioprinting. The replica of the patient's anatomy, starting from the elaboration of medical volumetric images (CT, MRI, etc.), allows a progressive extremization of treatment personalization that could be tailored for every single patient. In complex cases, the generation of a 3d model of the patient's anatomy allows the surgeons to better understand the case — they can almost “touch the anatomy” —, to perform a more ac- curate preoperative planning and, in some cases, to perform device positioning before going to the surgical room (i.e. joint arthroplasty). 3d printing is also commonly used to produce surgical
Paediatric musculoskeletal (MSK) disorders often produce severe limb deformities, that may require surgical correction. This may be challenging, especially in case of multiplanar, multifocal and/or multilevel deformities. The increasing implementation of novel technologies, such as virtual surgical planning (VSP), computer aided surgical simulation (CASS) and 3D-printing is rapidly gaining traction for a range of surgical applications in paediatric orthopaedics, allowing for extreme personalization and accuracy of the correction, by also reducing operative times and complications. However, prompt availability and accessible costs of this technology remain a concern. Here, we report our experience using an in-hospital low-cost desk workstation for VSP and rapid prototyping in the field of paediatric orthopaedic surgery. From April 2018 to September 2022 20 children presenting with congenital or post-traumatic deformities of the limbs requiring corrective osteotomies were included in the study. A conversion procedure was applied to transform the CT scan into a 3D model. The surgery was planned using the 3D generated model. The simulation consisted of a virtual process of correction of the alignment, rotation, lengthening of the bones and choosing the level, shape and direction of the osteotomies. We also simulated and calculated the size and position of hardware and customized massive allografts that were shaped in clean room at the hospital bone bank. Sterilizable 3D models and PSI were printed in high-temperature poly-lactic acid (HTPLA), using a low-cost 3D-printer. Twenty-three operations in twenty patients were performed by using VSP and CASS. The sites of correction were: leg (9 cases) hip (5 cases) elbow/forearm (5 cases) foot (5 cases) The 3D printed sterilizable models were used in 21 cases while HTPLA-PSI were used in five cases. customized massive bone allografts were implanted in 4 cases. No complications related to the use of 3D printed models or
The medial opening-wedge high tibial osteotomy (OW-HTO) is an accepted option to treat the isolated medial compartment osteoarthritis (OA) in varus knee. Despite satisfactory outcomes were described in literature, consistent complication rate has been reported and the provided accuracy of coronal alignment correction using conventional HTO techniques falls short. Patient specific instrumentations has been introduced with the aim to reduce complications and to improve the intra-operative accuracy according to the pre-operative plan, which is responsible for the clinical result of the surgery. In this talk, an overview of the clinical results of HTO patient specific instrumentation available in literature will be performed. Moreover, preliminary intra-operative and clinical results of a new customised 3-D printed
Reconstructing mandibular and maxillary bone defects with free vascularized bone flaps requires to take into account the aesthetic and functional requirements to consider subsequent placement of dental implants. It implies a three-dimensional conformation of the bone fragment. This is usually done by making osteotomies on the bone harvested. The aim of our study was to evaluate the interest of virtual planning and 3D printing using free software and a consumer printer in this indication. Invesalius® software (Technology of Information Renato Archer Center, Campinas, Brazil) was used to build virtual models from the patients' CT scan imaging data. The surgical procedure was planned using Meshmixer® (Autodesk, San Rafael, United States). Meshlab® software (Visual Computing Lab, Pisa, Italy) was used to design
Objectives. Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with tibial component subsidence or pain from high tibial strain being potential causes of revision. The optimal position in terms of load transfer has not been documented for lateral UKA. Our aim was to determine the effect of tibial component position on proximal tibial strain. Methods. A total of 16 composite tibias were implanted with an Oxford Domed Lateral Partial Knee implant using
The aim of this project is to test the parameters of Patient Specific Instruments (PSIs) and measuring accuracy of surgical cuts using sawblades with different depths of PSI
After the first big hype on additive manufacturing in medical industry the technology of 3D printing is now reaching a productive stage for some selected applications. These applications range from surgical models for visualisation to patient-specific
This study reports on a secondary exploratory analysis of the early clinical outcomes of a randomised clinical trial comparing robotic arm-assisted unicompartmental knee arthroplasty (UKA) for medial compartment osteoarthritis of the knee with manual UKA performed using traditional surgical jigs. This follows reporting of the primary outcomes of implant accuracy and gait analysis that showed significant advantages in the robotic arm-assisted group. A total of 139 patients were recruited from a single centre. Patients were randomised to receive either a manual UKA implanted with the aid of traditional surgical jigs, or a UKA implanted with the aid of a tactile guided robotic arm-assisted system. Outcome measures included the American Knee Society Score (AKSS), Oxford Knee Score (OKS), Forgotten Joint Score, Hospital Anxiety Depression Scale, University of California at Los Angeles (UCLA) activity scale, Short Form-12, Pain Catastrophising Scale, somatic disease (Primary Care Evaluation of Mental Disorders Score), Pain visual analogue scale, analgesic use, patient satisfaction, complications relating to surgery, 90-day pain diaries and the requirement for revision surgery.Objectives
Methods