Advertisement for orthosearch.org.uk
Results 1 - 20 of 33
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 68 - 72
1 Jan 2016
Goodman GP Engh Jr CA

The custom triflange is a patient-specific implant for the treatment of severe bone loss in revision total hip arthroplasty (THA). Through a process of three-dimensional modelling and prototyping, a hydroxyapatite-coated component is created for acetabular reconstruction. There are seven level IV studies describing the clinical results of triflange components. The most common complications include dislocation and infection, although the rates of implant removal are low. Clinical results are promising given the challenging problem. We describe the design, manufacture and implantation process and review the clinical results, contrasting them to other methods of acetabular reconstruction in revision THA. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):68–72


Bone & Joint Open
Vol. 5, Issue 4 | Pages 260 - 268
1 Apr 2024
Broekhuis D Meurs WMH Kaptein BL Karunaratne S Carey Smith RL Sommerville S Boyle R Nelissen RGHH

Aims. Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions. Methods. A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed. Results. CTAC positioning was generally accurate, with minor deviations in cup inclination (mean 2.7°; SD 2.84°), anteversion (mean 3.6°; SD 5.04°), and rotation (mean 2.1°; SD 2.47°). Deviation of the hip centre of rotation (COR) showed a mean vector length of 5.9 mm (SD 7.24). Flange positions showed small deviations, with the ischial flange exhibiting the largest deviation (mean vector length of 7.0 mm; SD 8.65). Overall, 83% of the implants were accurately positioned, with 17% exceeding malpositioning thresholds. CTACs used in tumour resections exhibited higher positioning accuracy than rTHA cases, with significant differences in inclination (1.5° for tumour vs 3.4° for rTHA) and rotation (1.3° for tumour vs 2.4° for rTHA). The use of intraoperative navigation appeared to enhance positioning accuracy, but this did not reach statistical significance. Conclusion. This study demonstrates favourable CTAC positioning accuracy, with potential for improved accuracy through intraoperative navigation. Further research is needed to understand the implications of positioning accuracy on implant performance and long-term survival. Cite this article: Bone Jt Open 2024;5(4):260–268


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 105 - 105
1 Nov 2015
Engh C
Full Access

The custom triflange acetabular component has been advocated for severe acetabular defects and pelvic discontinuity, cases in which a porous-coated hemisphere will not work. These are AAOS type III or IV defects, or alternatively classified as Paprosky 3B. Many have a pelvic discontinuity. A pre-operative CT of the pelvis is sent to the manufacturer who generates a one-to-one scale 3D model of the hemipelvis. The surgeon can review either a pdf file or an actual model. If the visualised defect cannot be treated with traditional methods then a triflanged component is created. The components have backside porous and hydroxyapatite coating. Initial rigid fixation is obtained with screw fixation to the ilium and ischium. Subsequent bone ingrowth can provide long term fixation. The goal is to span the acetabular defect and obtain fixation to the ilium and ischium with a third arm which rests on the pubis. Christie first reported on 67 hips (half with a discontinuity) with a mean follow-up of 53 months. No components were removed. There was an 8% reoperation for dislocation, 6% partial sciatic nerve palsy. 46% walked without support. Dennis reported 26 hips with a mean 54 month follow-up. Eighty-eight percent were considered successful. One implant was removed and left with a resection arthroplasty and 2 others had loose components but refused reoperation. Loosening of the ischial screws was a sign of failure in the three cases. Taunton reported 57 cases with a pelvic discontinuity treated with a triflange at mean follow-up of 65 months. Eighty-one percent had a stable component and a healed pelvic discontinuity. These authors also compared a custom triflange to a trabecular metal cup-cage construct finding similar implant costs of $12,500 and $11,250, respectively. All advocates of custom triflange acetabular components believe the results are similar or superior to other options in these very challenging cases at early follow-up. The primary disadvantage of the technique is the pre-operative time required to manufacture the device – typically 4–8 weeks


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 64 - 64
1 Feb 2015
Engh C
Full Access

The custom triflange acetabular component has been advocated for severe acetabular defects and pelvic discontinuity, cases in which a porous-coated hemisphere will not work. These are AAOS type III or IV defects, or alternatively classified as Paprosky 3B. Many have a pelvic discontinuity. A preoperative CT of the pelvis is sent to the manufacturer who generates a one-to-one scale 3D model of the hemipelvis. The surgeon can review either a pdf file or an actual model. If the visualised defect cannot be treated with traditional methods then a triflanged component is created. The components have backside porous and hydroxyapatite coating. Initial rigid fixation is obtained with screw fixation to the ilium and ischium. Subsequent bone ingrowth can provide long term fixation. The goal is to span the acetabular defect and obtain fixation to ilium and ischium with a third arm which rests on the pubis. Christie first reported on 67 hips (half with a discontinuity) with a mean follow-up of 53 months. No components were removed. There was an 8% reoperation for dislocation, 6% partial sciatic nerve palsy. 46% walked without support. Dennis reported 26 hips with a mean 54 month follow-up. 88% were considered successful. One implant was removed and left with a resection arthroplasty and 2 others had loose components but refused reoperation. Loosening of the ischial screws was a sign of failure in the three cases. Taunton reported 57 cases with a pelvic discontinuity treated with a triflange at mean follow-up of 65 months. 81% has a stable component and a healed pelvic discontinuity. These authors also compared a custom triflange to a trabecular metal cup-cage construct finding similar implant costs of $12,500 and $11,250, respectively. All advocates of custom triflange acetabular components believe the results are similar or superior to other options in these very challenging cases at early follow-up. The primary disadvantage of the technique is the preoperative time required to manufacture the device – typically 4–8 weeks


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 359 - 364
1 Apr 2024
Özdemir E de Lange B Buckens CFM Rijnen WHC Visser J

Aims. To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time. Methods. We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated. Results. The mean time between the implantation and the second CT scan was two years (1 to 5). The mean age of the patients during CTAC implantation was 75 years (60 to 92). The mean scaffold-bone contact area increased from 16% (SD 12.6) to 28% (SD 11.9). The mean scaffold-bone distance decreased from a mean of 6.5 mm (SD 2.0) to 5.5 mm (SD 1.6). None of the CTACs were revised or radiologically loose. Conclusion. There was a statistically significant increase of scaffold-bone contact area over time, but the total contact area of the scaffold in relation to the acetabular bone remained relatively low. As all implants remained well fixed, the question remains to what extend the scaffold contributes to the observed stability, in relation to the screws. A future design implication might be an elimination of the bulky scaffold component. This design modification would reduce production costs and may optimize the primary fit of the implant. Cite this article: Bone Joint J 2024;106-B(4):359–364


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 74 - 81
1 May 2024
Callary SA Broekhuis D Barends J Ramasamy B Nelissen RGHH Solomon LB Kaptein BL

Aims. The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling. Methods. Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC implant were designed from the preoperative CT scans of these patients. Computer models of the TMARS reconstruction were segmented from postoperative CT scans using a semi-automated method. The amount of bone removed, the implant-bone apposition that was achieved, and the restoration of the centre of rotation of the hip were compared between all the actual TMARS and the virtual CTAC implants. Results. The median amount of bone removed for TMARS reconstructions was significantly greater than for CTAC implants (9.07 cm. 3. (interquartile range (IQR) 5.86 to 21.42) vs 1.16 cm. 3. (IQR 0.42 to 3.53) (p = 0.004). There was no significant difference between the median overall implant-bone apposition between TMARS reconstructions and CTAC implants (54.8 cm. 2. (IQR 28.2 to 82.3) vs 56.6 cm. 2. (IQR 40.6 to 69.7) (p = 0.683). However, there was significantly more implant-bone apposition within the residual acetabulum (45.2 cm. 2. (IQR 28.2 to 72.4) vs 25.5 cm. 2. (IQR 12.8 to 44.1) (p = 0.001) and conversely significantly less apposition with the outer cortex of the pelvis for TMARS implants compared with CTAC reconstructions (0 cm. 2. (IQR 0 to 13.1) vs 23.2 cm. 2. (IQR 16.4 to 30.6) (p = 0.009). The mean centre of rotation of the hip of TMARS reconstructions differed by a mean of 11.1 mm (3 to 28) compared with CTAC implants. Conclusion. In using TMARS, more bone is removed, thus achieving more implant-bone apposition within the residual acetabular bone. In CTAC implants, the amount of bone removed is minimal, while the implant-bone apposition is more evenly distributed between the residual acetabulum and the outer cortex of the pelvis. The differences suggest that these implants used to treat pelvic discontinuity might achieve short- and long-term stability through different biomechanical mechanisms. Cite this article: Bone Joint J 2024;106-B(5 Supple B):74–81


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 6 - 6
23 Jun 2023
Callary S Barends J Solomon LB Nelissen R Broekhuis D Kaptein B
Full Access

The best treatment method of large acetabular bone defects at revision THR remains controversial. Some of the factors that need consideration are the amount of residual pelvic bone removed during revision; the contact area between the residual pelvic bone and the new implant; and the influence of the new acetabular construct on the centre of rotation of the hip. The purpose of this study was to compare these variables in two of the most used surgical techniques used to reconstruct severe acetabular defects: the trabecular metal acetabular revision system (TMARS) and a custom triflanged acetabular component (CTAC). Pre- and post-operative CT-scans were acquired from 11 patients who underwent revision THR with a TMARS construct for a Paprosky IIIB defect, 10 with pelvic discontinuity, at Royal Adelaide Hospital. The CT scans were used to generate computer models to virtually compare the TMARS and CTAC constructs using a semi-automated method. The TMARS construct model was calculated using postoperative CT scans while the CTAC constructs using the preoperative CT scans. The bone contact, centre of rotation, inclination, anteversion and reamed bone differences were calculated for both models. There was a significant difference in the mean amount of bone reamed for the TMARS reconstructions (15,997 mm. 3. ) compared to the CTAC reconstructions (2292 mm. 3. , p>0.01). There was no significant difference between overall implant bone contact (TMARS 5760mm. 2. vs CTAC 5447mm. 2. , p=0.63). However, there was a significant difference for both cancellous (TMARS 4966mm. 2. vs CTAC 2887mm. 2. , p=0.008) and cortical bone contact (TMARS 795mm. 2. vs CTAC 2560mm. 2. , p=0.001). There was no difference in inclination and anteversion achieved. TMARS constructs resulted on average in a centre of rotations 7.4mm more lateral and 4.0mm more posterior. Modelling of two different reconstructions of Paprosky IIIB defects demonstrated potential important differences between all variables investigated


Bone & Joint Open
Vol. 3, Issue 11 | Pages 867 - 876
10 Nov 2022
Winther SS Petersen M Yilmaz M Kaltoft NS Stürup J Winther NS

Aims. Pelvic discontinuity is a rare but increasingly common complication of total hip arthroplasty (THA). This single-centre study evaluated the performance of custom-made triflange acetabular components in acetabular reconstruction with pelvic discontinuity by determining: 1) revision and overall implant survival rates; 2) discontinuity healing rate; and 3) Harris Hip Score (HHS). Methods. Retrospectively collected data of 38 patients (39 hips) with pelvic discontinuity treated with revision THA using a custom-made triflange acetabular component were analyzed. Minimum follow-up was two years (mean 5.1 years (2 to 11)). Results. There were eight subsequent surgical interventions. Two failures (5%) of the triflange acetabular components were both revised because of deep infection. There were seven (18%) patients with dislocation, and five (13%) of these were treated with a constraint liner. One patient had a debridement, antibiotics, and implant retention (DAIR) procedure. In 34 (92%) hips the custom-made triflange component was considered stable, with a healed pelvic discontinuity with no aseptic loosening at midterm follow-up. Mean HHS was 80.5 (48 to 96). Conclusion. The performance of the custom triflange implant in this study is encouraging, with high rates of discontinuity healing and osteointegration of the acetabular implant with no aseptic loosening at midterm follow-up. However, complications are not uncommon, particularly instability which we successfully addressed with constrained liners. Cite this article: Bone Jt Open 2022;3(11):867–876


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 71 - 71
1 Jun 2018
Berend K
Full Access

Although the introduction of ultraporous metals in the forms of acetabular components and augments has substantially improved the orthopaedic surgeon's ability to reconstruct severely compromised acetabuli, there remain some revision THAs that are beyond the scope of cups, augments, and cages. In situations involving catastrophic bone loss, allograft-prosthetic composites or custom acetabular components may be considered. Custom components offer the potential advantages of immediate, rigid fixation with a superior fit individualised to each patient. These custom triflange components require a pre-operative CT scan with 3-D reconstruction using rapid prototyping technology. The surgeon can fine-tune exact component positioning, determine location and length of screws, modify the fixation surface with, for example, the addition of hydroxyapatite, and dictate which screws will be locked to enhance fixation. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means. We previously reported on our center's experience with 23 patients (24 hips) treated with custom triflange components with minimum 2-year follow-up. This method of reconstruction was used in a cohort of patients with Paprosky Type 3B acetabular defects, which represented 3% (30 of 955) of the acetabular revisions we performed during the study period of 2003 to 2012. At a mean follow-up of 4.8 years (range, 2.3–9 years) there were 4 subsequent surgical interventions: 2 failures secondary to sepsis, and 1 stem revision and 1 open reduction internal fixation for periprosthetic femoral fracture. There were two minor complications managed non-operatively, but all of the components were noted to be well-fixed with no obvious migration or loosening observed on the most recent radiographs. Harris Hip Scores improved from a mean of 42 (SD ±16) before surgery to 65 (SD ±18) at latest follow-up (p<0.001). More recently, we participated in a multi-center study of 95 patients treated with reconstruction using custom triflange components w a mean follow-up of 3.5 years. Pelvic defects included Paprosky Type 2C, 3A, 3B and pelvic discontinuity. Concomitant femoral revision was performed in 21 hips. Implants used a mean of 12 screws with 3 locking screws. Twenty of 95 patients (21%) experienced at least one complication, including 6% dislocation, 6% infection, and 2% femoral-related issues. Implants were ultimately removed in 11% of hips. One hip was revised for possible component loosening. Survivorship with aseptic loosening as the endpoint was 99%. Custom acetabular triflange components represent yet another tool in the reconstructive surgeon's armamentarium. These devices can be helpful in situations of catastrophic bone loss, achieving reliable fixation. Clinical results are inferior to both primary THA and more routine revision THA. Patients and surgeons should be aware of the increased complications associated with these complex hip revisions


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 109 - 109
1 May 2019
Berend K
Full Access

Although the introduction of ultraporous metals in the forms of acetabular components and augments has substantially improved the orthopaedic surgeon's ability to reconstruct severely compromised acetabuli, there remain some revision THAs that are beyond the scope of cups, augments, and cages. In situations involving catastrophic bone loss, allograft-prosthetic composites or custom acetabular components may be considered. Custom components offer the potential advantages of immediate, rigid fixation with a superior fit individualised to each patient. These custom triflange components require a preoperative CT scan with three-dimensional (3-D) reconstruction using rapid prototyping technology, which has evolved substantially during the past decade. The surgeon can fine-tune exact component positioning, determine location and length of screws, modify the fixation surface with, for example, the addition of hydroxyapatite, and dictate which screws will be locked to enhance fixation. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means. We previously reported on our center's experience with 23 patients (24 hips) treated with custom triflange components with minimum 2-year follow-up. This method of reconstruction was used in a cohort of patients with Paprosky Type 3B acetabular defects, which represented 3% (30 of 955) of the acetabular revisions we performed during the study period of 2003 to 2012. At a mean follow-up of 4.8 years (range, 2.3 – 9 years) there were four subsequent surgical interventions: two failures secondary to sepsis, and one stem revision and one open reduction internal fixation for periprosthetic femoral fracture. There were two minor complications managed nonoperatively, but all of the components were noted to be well-fixed with no obvious migration or loosening observed on the most recent radiographs. Harris hip scores improved from a mean of 42 (SD ±16) before surgery to 65 (SD ±18) at latest follow-up (p < 0.001). More recently, we participated in a multi-center study of 95 patients treated with reconstruction using custom triflange components who had a mean follow-up of 3.5 years. Pelvic defects included Paprosky Type 2C, 3A, 3B and pelvic discontinuity. Concomitant femoral revision was performed in 21 hips. Implants used a mean of 12 screws with 3 locking screws. Twenty of 95 patients (21%) experienced at least one complication, including 6% dislocation, 6% infection, and 2% femoral-related issues. Implants were ultimately removed in 11% of hips. One hip was revised for possible component loosening. Survivorship with aseptic loosening as the endpoint was 99%. Custom acetabular triflange components represent yet another tool in the reconstructive surgeon's armamentarium. These devices can be helpful in situations of catastrophic bone loss, achieving reliable fixation. Clinical results are inferior to both primary THA and more routine revision THA. Patients and surgeons should be aware of the increased complications associated with these complex hip revisions


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 59 - 59
1 Apr 2017
Berend K
Full Access

Although the introduction of ultraporous metals in the forms of acetabular components and augments has substantially improved the orthopaedic surgeon's ability to reconstruct severely compromised acetabuli, there remain some revision THAs that are beyond the scope of cups, augments, and cages. In situations involving catastrophic bone loss, allograft-prosthetic composites or custom acetabular components may be considered. Custom components offer the potential advantages of immediate, rigid fixation with a superior fit individualised to each patient. These custom triflange components require a pre-operative CT scan with three-dimensional (3-D) reconstruction using rapid prototyping technology, which has evolved substantially during the past decade. The surgeon can fine-tune exact component positioning, determine location and length of screws, modify the fixation surface with, for example, the addition of hydroxyapatite, and dictate which screws will be locked to enhance fixation. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means. The general indications for using custom triflange components include: (1) failed prior salvage reconstruction with cage or porous metal construct augments, (2) large contained defects with possible discontinuity, (3) known pelvic discontinuity, and (4) complex multiply surgically treated hips with insufficient bone stock to reconstruct using other means. We previously reported on our center's experience with 23 patients (24 hips) treated with custom triflange components with minimum 2-year follow-up. This method of reconstruction was used in a cohort of patients with Paprosky Type 3B acetabular defects, which represented 3% (30 of 955) of the acetabular revisions we performed during the study period of 2003 to 2012. At a mean follow-up of 4.8 years (range, 2.3–9 years) there were 4 subsequent surgical interventions: 2 failures secondary to sepsis, and 1 stem revision and 1 open reduction internal fixation for periprosthetic femoral fracture. There were 2 minor complications managed nonoperatively, but all of the components were noted to be well-fixed with no obvious migration or loosening observed on the most recent radiographs. Harris hip scores improved from a mean of 42 (SD ± 16) before surgery to 65 (SD ± 18) at latest follow-up (p<0.001). More recently, we participated in a multi-center study of 95 patients treated with reconstruction using custom triflange components who had a mean follow-up of 3.5 years. Pelvic defects included Paprosky Type 2C, 3A, 3B and pelvic discontinuity. Concomitant femoral revision was performed in 21 hips. Implants used a mean of 12 screws with 3 locking screws. Twenty of 95 patients (21%) experienced at least one complication, including 6% dislocation, 6% infection, and 2% femoral-related issues. Implants were ultimately removed in 11% of hips. One hip was revised for possible component loosening. Survivorship with aseptic loosening as the endpoint was 99%,. Custom acetabular triflange components represent yet another tool in the reconstructive surgeon's armamentarium. These devices can be helpful in situations of catastrophic bone loss, achieving reliable fixation. Clinical results are inferior to both primary THA and more routine revision THA. Patients and surgeons should be aware of the increased complications associated with these complex hip revisions


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 63 - 63
1 May 2013
Haidukewych G
Full Access

Pelvic discontinuity remains one of the most difficult reconstructive challenges during acetabular revision. Bony defects are extremely variable and remaining bone quality may be extremely poor. Careful pre-operative imaging with plain radiographs, oblique views, and CT scanning is recommended to improve understanding of the remaining bone stock. It is wise to have several options available intra-operatively including metal augments, jumbo cups, and cages. Various treatment options have been used with variable success. The principles of management include restoration of acetabular stability by “connecting” the ilium to the ischium, and by (hopefully) allowing some bony ingrowth into a porous surface to allow longer-term construct stability. Posterior column plates can be useful to stabilise the pelvis, and can supplement a trabecular metal uncemented acetabular component. Screws into the dome and into the ischium are used to span the discontinuity. More severe defects may require so-called “cup-cage” constructs or trabecular metal augmentation distraction techniques. The most severe defects typically necessitate custom triflange components. Triflange constructs allow broad based contact with remaining bone stock, and can span surprisingly large defects. Recent cost analyses have shown that custom triflange constructs are comparable to cup-cage-augment reconstructions. The results of these various solutions to manage pelvic discontinuity is extremely variable, however, it is fair to conclude that constructs that allow some bony ingrowth have demonstrated improved survivorship when compared to historical treatments such as bulk allografts protected by cages. The author prefers a posterior column plate and a trabecular metal cup for simple discontinuities, a cup-cage for larger defects, and a custom triflange for the most severe defects. Pre-operative imaging is critical to guide this decision-making, and careful attention to detail is important to obtain a stable, durable construct


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 110 - 110
1 May 2019
Abdel M
Full Access

Pelvic discontinuity is defined as a separation of the ilium superiorly from the ischiopubic segment inferiorly. In 2018, the main management options include the following: 1) hemispheric acetabular component with posterior column plating, 2) cup-cage construct, 3) pelvic distraction, and 4) custom triflange construct. A hemispheric acetabular component with posterior column plating is a good option for acute pelvic discontinuities. However, healing potential is dependent on host's biology and characteristic of the discontinuity. The plate should include 3 screws above and 3 screws below the discontinuity with compression in between. In addition, the hemispherical acetabular component should have at least 50% host bone contact with 3–4 screws superior and 2–3 screws inferior to the discontinuity. On the other hand, a cup-cage construct can be used in any pelvic discontinuity. This includes a highly porous acetabular component placed on remaining host bone. Occasionally, highly porous metal augments are used to fill the remaining bone defects. A supplemental cage is placed over the acetabular component, spanning the discontinuity from the ilium to the ischium. A polyethylene liner is then cemented into place with antibiotic-loaded bone cement. Rarely, pelvic distraction may be needed. With this technique, pelvic stability is obtained via distraction of the discontinuity by elastic recoil of the pelvis and by fixing the superior hemipelvis and inferior hemipelvis to a highly porous metal cup or augment with screws, thereby unitizing the superior and inferior aspects of the pelvis. In essence, the cup acts as a segmental replacement of the acetabulum, with healing occurring to the cup or augment, resulting in a unitised hemipelvis. Frequently, the discontinuity itself does not achieve bony healing. Finally, custom triflange constructs are being utilised with increasing frequency. Triflange cups are custom-designed, porous and/or hydroxyapatite coated, titanium acetabular components with iliac, ischial, and pubic flanges. Rigid fixation promotes healing of the discontinuity and biologic fixation of the implant. It requires a CT scan, dedicated preoperative design, and fabrication costs


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 109 - 113
1 Nov 2013
Petrie J Sassoon A Haidukewych GJ

Pelvic discontinuity represents a rare but challenging problem for orthopaedic surgeons. It is most commonly encountered during revision total hip replacement, but can also result from an iatrogentic acetabular fracture during hip replacement. The general principles in management of pelvic discontinuity include restoration of the continuity between the ilium and the ischium, typically with some form of plating. Bone grafting is frequently required to restore pelvic bone stock. The acetabular component is then impacted, typically using an uncemented, trabecular metal component. Fixation with multiple supplemental screws is performed. For larger defects, a so-called ‘cup–cage’ reconstruction, or a custom triflange implant may be required. Pre-operative CT scanning can greatly assist in planning and evaluating the remaining bone stock available for bony ingrowth. Generally, good results have been reported for constructs that restore stability to the pelvis and allow some form of biologic ingrowth. Cite this article: Bone Joint J 2013;95-B, Supple A:109–13


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 98 - 98
1 Aug 2017
Ries M
Full Access

Most acetabular defects can be treated with a cementless acetabular cup and screw fixation. However, larger defects with segmental bone loss and discontinuity often require reconstruction with augments, a cup-cage, or triflange component – which is a custom-made implant that has iliac, ischial, and pubic flanges to fit the outer table of the pelvis. The iliac flange fits on the ilium extending above the acetabulum. The ischial and pubic flanges are smaller than the iliac flange and usually permit screw fixation into the ischium and pubis. The custom triflange is designed based on a pre-operative CT scan of the pelvis with metal artifact reduction, which is used to generate a three-dimensional image of the pelvis and triflange component. The design of the triflange involves both the manufacturing engineer and surgeon to determine the most appropriate overall implant shape, screw fixation pattern, and cup location and orientation. A plastic model of the pelvis, and triflange implant can be made in addition to the triflange component to be implanted, in order to assist the surgeon during planning and placement of the final implant in the operating room. A wide surgical exposure is needed including identification of the sciatic nerve. Proximal dissection of the abductors above the sciatic notch to position the iliac flange can risk denervation of the abductor mechanism. Blood loss during this procedure can be excessive. Implant survivorship of 88 to 100% at 53-month follow-up has been reported. However, in a series of 19 patients with Paprosky type 3 defects, only 65% were considered successful. The custom triflange also tends to lateralise the hip center which may adversely affect hip mechanics. The use of a triflange component is indicated in cases with massive bone loss or discontinuity in which other reconstructive options are not considered suitable


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 34 - 34
1 Oct 2020
Lombardi AV
Full Access

Background. Ultraporous metals have now been used in acetabular reconstruction for two decades with excellent survival. The purpose of this study is to evaluate a newer porous metal made from Ti6Al4V titanium alloy in complex primary and revision hip arthroplasty. Methods. A retrospective review as performed on all total hip arthroplasty (THA) procedures in which a G7 Osseo-Ti (Zimmer Biomet, Warsaw, IN) acetabular component was used between 2015 and 2017. Patients with 2-year minimum follow-up or failure were included, yielding a cohort of 123 patients (126 hips). There were 50 male patients (41%; 51 hips) and 73 females (59%; 75 hips). Mean age was 65 years (range, 43–88) and mean BMI was 30.7 kg/m. 2. (range, 18–56). Indications for ultraporous metal components were in hips with compromised bone stock or severe acetabular deformity. Procedures were 35 complex primary THA and 91 revision THA that included 12 conversions and 24 reimplantations as part of 2-staged exchange for treatment of infection. Results. With an average 3.3-year follow-up (range, 2–5 years), 1 hip in the primary series (2.9%) and 4 hips in the revision series (4.4%) were revised for aseptic loosening of the acetabular component. Three of these re-revisions required custom triflange devices. Five patients (4%) failed for periprosthetic infection, which included 1 primary THA done for rheumatoid arthritis and post-radiation necrosis, and 4 second-stage reimplantation revision THAs for prior infection. Two revision patients, one done for active instability and one multiply revised, subsequently dislocated and required liner revision to constrained constructs. Kaplan-Meier analysis to endpoint of acetabular revision for aseptic loosening was 96.6% (±3.4%) in the primary series and 95.3% (±2.3%) in the revision series. Conclusion. This three-dimensionally printed ultraporous titanium acetabular component demonstrated promising early results in complex primary and revision total hip arthroplasty


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 68 - 68
1 Jun 2018
Gehrke T
Full Access

The treatment of extensive bone loss and massive acetabular defects is a challenging procedure, especially in cases with concomitant pelvic discontinuity (PD). Pelvic discontinuity describes the separation of the ilium proximally from the ischio-pubic region distally. The appropriate treatment strategy is to restore a stable continuity between the ischium and the ilium to reconstruct the anatomical hip center. Several treatment options such as antiprotrusio cages, metal augments, reconstruction cages with screw fixation, structural allograft with plating, jumbo cups, oblong cups and custom-made triflange acetabular components have been described as possible treatment options. Cage and/or ring constructs or acetabular allograft are commonly used techniques with unsatisfactory results and high failure rates. More favorable results have been presented with custom triflange acetabular components (CTAC), although the results are still unsatisfactory. Three-dimensional printing technology (3DP) has already become part of the surgical practice. In this context, preliminary clinical and radiological results using a 3D-printed custom acetabular component in the management of extensive acetabular defects are presented. The overall complication rate was 33.3 %. In one out of 15 patients (6.6 %), implant-associated complication occurred revealing an overall implant-associated survival rate of 93.3%. The 3D-printed custom acetabular component suggests a promising future, although the manufacturing process has high costs and the complication rate is still high


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 59 - 59
1 Dec 2016
Engh C
Full Access

The custom triflange acetabular component has been advocated for severe acetabular defects and pelvic discontinuity, cases in which a porous-coated hemisphere will not work. These are AAOS type III or IV defects, or alternatively classified as Paprosky 3B. Many have a pelvic discontinuity. A preoperative CT of the pelvis is sent to the manufacturer who generates a one to one scale 3D model of the hemipelvis. If the visualised defect cannot be treated with traditional methods then a triflanged component is created. Initial rigid fixation is obtained with screw fixation to the ilium and ischium. Subsequent bone ingrowth can provide long term fixation. The goal is to span the acetabular defect and obtain fixation to ilium and ischium with a third flange which rests on the pubis. Christie first reported on 67 hips (half with a discontinuity) with a mean follow-up of 53 months. No components were removed. There was an 8% reoperation for dislocation, 6% partial sciatic nerve palsy. Dennis reported 26 hips with a mean 54 month follow-up. Eighty-eight percent were considered successful. Taunton reported 57 cases with a pelvic discontinuity treated with a triflange at mean follow-up of 65 months. Eighty-one percent had a stable component and a healed pelvic discontinuity. The primary disadvantage of the technique is the preoperative time required to manufacture the device – typically 4–8 weeks


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 312 - 318
1 Apr 2024
Sheth NP Jones SA Sanghavi SA Manktelow A

The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity.

Cite this article: Bone Joint J 2024;106-B(4):312–318.


Bone & Joint Open
Vol. 3, Issue 12 | Pages 991 - 997
23 Dec 2022
McPherson EJ Stavrakis AI Chowdhry M Curtin NL Dipane MV Crawford BM

Aims

Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects.

Methods

We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures.