Bone healing outcome is highly dependent on the initial mechanical fracture environment [1]. In vivo, direct bone healing requires absolute stability and an interfragmentary strain (IFS) below 2% [2]. In the majority of cases, however, endochondral ossification is engaged where frequency and amplitude of IFS are key factors. Still, at the cellular level, the influence of those parameters remains unknown. Understanding the regulation of naïve hMSC differentiation is essential for developing effective bone healing strategies. Human bone-marrow-derived MSC (KEK-ZH-NR: 2010–0444/0) were embedded in 8% gelatin methacryol. Samples (5mm Ø x 4mm) were subjected to 0, 10 and 30%
To unravel the relation between mechanical loading and biological response, cell-seeded hydrogel constructs can be used in bioreactors under multi-axial loading conditions that combines compressive with torsional loading. Typically, considerable biological variation is observed. This study explores the potential confounding role of mechanical factors in multi-directional loading experiments. Indeed, depending on the material properties of the constructs and characteristics of the mechanical loading, the mechanical environment within the constructs may vary. Consequently, the local biological response may vary from chondrogenesis in some parts to proteoglycan loss in others. This study uses the finite element method to investigate the effects of material properties of cell-seeded constructs and multiaxial loading characteristics on local mechanical environment (stresses and strains) and relate these to chondrogenesis (based on maximum
Introduction. Low back pain is a major public health problem in our society. Degeneration of intervertebral disc (IVD) appears to be the leading cause of chronic low-back pain [1]. Mechanical stimulations including compressive and tensional forces are directly implicated in IVD degeneration. Several studies have implicated the cytoskeleton in mechanotransduction [2, 3], which is important for communication and transport between the cells and extracellular matrix (ECM). However, the potential roles of the cytoskeletal elements in the mechanotransduction pathways in IVD are largely unknown. Methods. Outer annulus fibrosus (OAF) and nucleus pulposus (NP) cells from skeletally mature bovine IVD were either seeded onto Flexcell¯ type I collagen coated plates or seeded in 3% agarose gels, respectively. OAF cells were subjected to cyclic tensile strain (10%, 1Hz) and NP cells to cyclic
The cortical strains on the femoral neck and proximal femur were measured before and after implantation of a resurfacing femoral component in 13 femurs from human cadavers. These were loaded into a hip simulator for single-leg stance and stair-climbing. After resurfacing, the mean tensile strain increased by 15% (95% confidence interval (CI) 6 to 24, p = 0.003) on the lateral femoral neck and the mean
Abstract. Objectives. Back pain will be experienced by 70–85% of all people at some point in their lives and is linked with intervertebral disc (IVD) degeneration. The aim of this study was to 1) compare 3D internal strains in degenerate and non-degenerate human IVD under axial compression and 2) to investigate whether there is a correlation between strain patterns and failure locations. Methods. 9.4T MR images were obtained of ten human lumbar IVD. Five were classed as degenerate (Pfirrmann = 3.6 ± 0.3) and five were classed as non-degenerate (Pfirrmann = 2.0 ± 0.2). MR Images were acquired before applying load (unloaded), after 1 kN of axial compression, and after compression to failure using a T2-weighted RARE sequence (resolution = 90 µm). Digital Volume Correlation was then used to quantify 3D strains within the IVDs, and failure locations were determined from analysis of the failure MRIs. Results. Average of axial strains were higher (p<0.05) in the degenerate samples compared to the non-degenerate (−3.4 vs-5.2%, respectively), particularly in the posterior and lateral annulus (−6.2 vs −3.6%, and −5.6 vs −3.5%, respectively). Maximum 3D
To date, the fixation of proximal humeral fractures with angular stable locking plates is still insufficient with mechanical failure rates of 18% to 35%. The PHILOS plate (DePuy Synthes, Switzerland) is one of the most used implants. However, this plate has not been demonstrated to be optimal; the closely symmetric plate design and the largely heterogeneous bone mineral density (BMD) distribution of the humeral head suggest that the primary implant stability may be improved by optimizing the screw orientations. Finite element (FE) analysis allows testing of various implant configurations repeatedly to find the optimal design. The aim of this study was to evaluate whether computational optimization of the orientation of the PHILOS plate locking screws using a validated FE methodology can improve the predicted primary implant stability. The FE models of nineteen low-density (humeral head BMD range: 73.5 – 139.5 mg/cm3) left proximal humeri of 10 male and 9 female elderly donors (mean ± SD age: 83 ± 8.8 years) were created from high-resolution peripheral computer tomography images (XtremeCT, Scanco Medical, Switzerland), using a previously developed and validated computational osteosynthesis framework. To simulate an unstable mal-reduced 3-part fracture (AO/OTA 11-B3.2), the samples were virtually osteotomized and fixed with the PHILOS plate, using six proximal screws (rows A, B and E) according to the surgical guide. Three physiological loading modes with forces taken from musculoskeletal models (AnyBody, AnyBody Technology A/S, Denmark) were applied. The FE analyses were performed with Abaqus/Standard (Simulia, USA). The average principal
We have compared the changes in the pattern of the principal strains in the proximal femur after insertion of eight uncemented anatomical stems and eight customised stems in human cadaver femora. During testing we aimed to reproduce the physiological loads on the proximal femur and to simulate single-leg stance and stair-climbing. The strains in the intact femora were measured and there were no significant differences in principal tensile and
Background. Finite element (FE) models are frequently used in biomechanics to predict the behaviour of new implant designs. To increase the stability after severe bone loss tibial components with long stems are used in revision total knee replacements (TKR). A clinically reported complication after revision surgery is the occurrence of pain in the stem-end region. The aim of this analysis was the development of a validated FE-model of a fully cemented implant and to evaluate the effect of different tibial stem orientations. Methods. A scanned 4th generation synthetic left tibia (Sawbones) was used to develop the FE-model with a virtually implanted fully cemented tibial component. The 500 N load was applied with medial:lateral compartment distributions of 60:40 and 80:20. Different stem positons were simulated by modifying the resection surface angle posterior to the tibias shaft axis. The results were compared with an experimental study which used strain gauges on Sawbones tibias with an implanted tibial TKR component. The locations of the experimental strain gauges were modelled in the FE study. Results. Similar patterns and magnitudes of the predicted and experimentally measured strains were observed which validated the FE-model. An increase of strain at the most distal gauge locations were measured with the stem-end in contact to the posterior cortical bone. More uniform strain distributions were observed with the stem aligned to the intramedullary canal axis. The load distribution of 80:20 shifts the strains to tensile laterally and a large increase of
Objective. Full-thickness cartilage defects are commonly found in symptomatic knee patients, and are associated with progressive cartilage degeneration. Although the risk of defect progression to degenerative osteoarthritis is multifactorial, articular cartilage defects change contact mechanics and the mechanical response of tissue adjacent to the defect. The objective of this study was to quantify changes in intra-tissue strain patterns occurring at the defect rim and opposing tissue in an experimental model mimicking in vivo cartilage-on-cartilage contact conditions. Methods. Macroscopically intact osteochondral explants with smooth surfaces were harvested form the femoral condyles of 9 months old bovine knees. Two groups were tested; reference group with intact cartilage (n=8) and defect group with a full thickness cylindrical defect (diameter 8 mm) in one cartilage surface from each pair (n=8). The explants with defect articular surface and the opposing intact cartilage were compressed at ∼0.33 times body weight (350N) during cycles of 2s loading followed by 1.4s unloading. In plane tissue deformations were measured using displacement encoded imaging with stimulated echoes (DENSE) on a 9.4T MRI scanner. A two-sample t-test was used to assess statistical significance (p<0.05) of differences in maximal Green-Lagrange strains between the defect, opposing surface and intact reference cartilage. Results. Strain levels were elevated in the cartilage neighbouring the defect rim and in the opposing articulating surface. Similar to intact cartilage, compressive and tensile strains presented a depth dependent variation. The maximal strains profiles were highest in the superficial zone and decreased with depth for all explants, except for the shear strains in the cartilage opposing the defect which were constant. The maximal tensile strain in the middle and superficial zone were significantly higher for the defect cartilage (3.97±1.99% and 4.52±2.04%) compared to the intact reference (1.91±1.13% and 2.53±1.27%), indicating that the defect edges are bulging towards the defect. The shear strains were significantly higher (∼1.5x) throughout cartilage depth of the defect rim compared to the intact reference cartilage. However, in the cartilage opposing the defect, shear strains were significantly lower (∼0.5x) compared to the intact cartilage representing less matrix distortion. No significant difference in maximal
In order to investigate the osteoinductive properties of allograft used in impaction grafting and the effect of strain during impaction on these properties, we designed an in vitro experiment to measure strain-related release of bone morphogenetic protein-7 (BMP-7) from fresh-frozen femoral head allograft. A total of 40 10 mm cubes of cancellous bone were cut from ten samples of fresh-frozen femoral head. The marrow was removed from the cubes and the baseline concentrations of BMP-7 were measured. Specimens from each femoral head were allocated to four groups and subjected to different
Hydroxyapatite-coated standard anatomical and customised femoral stems are designed to transmit load to the metaphyseal part of the proximal femur in order to avoid stress shielding and to reduce resorption of bone. In a randomised in vitro study, we compared the changes in the pattern of cortical strain after the insertion of hydroxyapatite-coated standard anatomical and customised stems in 12 pairs of human cadaver femora. A hip simulator reproduced the physiological loads on the proximal femur in single-leg stance and stair-climbing. The cortical strains were measured before and after the insertion of the stems. Significantly higher strain shielding was seen in Gruen zones 7, 6, 5, 3 and 2 after the insertion of the anatomical stem compared with the customised stem. For the anatomical stem, the hoop strains on the femur also indicated that the load was transferred to the cortical bone at the lower metaphyseal or upper diaphyseal part of the proximal femur. The customised stem induced a strain pattern more similar to that of the intact femur than the standard, anatomical stem.
Bone surface strains were measured in cadaver femora during loading prior to and after resurfacing of the hip and total hip replacement using an uncemented, tapered femoral component. In vitro loading simulated the single-leg stance phase during walking. Strains were measured on the medial and the lateral sides of the proximal aspect and the mid-diaphysis of the femur. Bone surface strains following femoral resurfacing were similar to those in the native femur, except for proximal shear strains, which were significantly less than those in the native femur. Proximomedial strains following total hip replacement were significantly less than those in the native and the resurfaced femur. These results are consistent with previous clinical evidence of bone loss after total hip replacement, and provide support for claims of bone preservation after resurfacing arthroplasty of the hip.