Neck of femur fracture (NOF#) is the commonest reason for admission to an orthopaedic ward with 70-75,000 cases each year in the UK. 1. The femoral head is often sent to pathology if there is clinical suspicion of a malignant cause. There is limited evidence in the literature to support the efficacy of this. 2. The purpose of this project was to study the incidence of femoral head pathology analysis in NOF # patients with a background of malignancy and evaluate the impact this investigation has on guiding future management. Retrospective analysis of all neck of femur fractures admitted to the Queen Elizabeth University Hospital between 01/01/2021 and 31/12/2021. The electronic notes were accessed and for patients with past medical history of malignancy, it was confirmed whether femoral head or bone reamings were sent to pathology, resultant findings and the impact on subsequent management. In 2021, 784 patients were admitted to the QEUH with a NOF#. Of these, 770 (98.2%) underwent operative management, 138 (17.3%) of whom had a past medical history (PMH) of malignancy. Intra-operative pathology was sent from 19 (13.7%) of these 138 patients. No malignant cells were found in 13 (69%) samples, and in 6 (31%), the known active malignancy was confirmed. In all cases where samples were sent for pathology, none caused any change in management. In this retrospective study, pathological investigations in NOF# patients with a PMH of malignancy had no impact on further management. The authors would not advocate for sending
As high incidences of tendinopathies are observed particularly in those who intensively use their tendons, we assume that pathological changes are caused, at least partially, by mechanical overload. This has led to the so-called overload hypothesis, explaining the development of tendinopathies by structural failure resulting from excessive load. At the same time, tendon loading is an important part in tendon rehabilitation. Currently, exercise treatment approaches such as eccentric training or heavy load resistance training are widely applied in tendinopathy rehabilitation, with good
Recently, a new generation of superior clavicle plates was developed featuring the variable-angle locking technology for enhanced screw positioning and optimized plate-to-bone fit design. On the other hand, mini-fragment plates used in dual plating mode have demonstrated promising
Total hip arthroplasty (THA) outcome in patients with osteonecrosis of the femoral head ONFH) are excellent, however, there is controversy when compared with those in patients with osteoarthritis (OA). Reduced mineralization capacity of osteoblasts of the proximal femur in patients with ONFH could affect implant fixation. We asked if THA fixation in patients with ONFH is worse than in those with OA. We carried out a prospective comparative case (OA)-control (ONFH) study of patients undergoing THA at our hospital between 2017 and 2019. The minimum follow-up was 2 years. Inclusion criteria were patients with uncemented THA, younger than 70 years old, a Dorr femoral type C and idiopathic ONFH. We compared the clinical (Merlé D'Aubigné-Postel score) and radiological results related with implant positioning and fixation. Engh criteria and subsidence were assessed at the immediate postoperative, 12 weeks, 6 months, 12 months and yearly. Osteoblastic activity was determined by mineralization assay on primary cultures of osteoblasts isolated from trabecular bone samples collected from the intertrochanteric area obtained during surgery. Group 1 (ONFH) included 18 patients and group 2 (OA), 22. Average age was 55.9 years old in group 1 and 61.3 in group 2. (p=0.08). There were no differences related with sex, Dorr femoral type or femoral filling. The mean clinical outcome score was 17.1 in group 1 and 16.5 in group 2 (p=0.03). There were no cases of dislocation, infection, or revision surgery in this series. There were 5 cases (28%) of femoral stem subsidence greater than 3mm within 6 first months in group 1 and 1 case (4.5%) in group 2 (p=0.05). Although there were no significant differences related to
The medial opening-wedge high tibial osteotomy (OW-HTO) is an accepted option to treat the isolated medial compartment osteoarthritis (OA) in varus knee. Despite satisfactory outcomes were described in literature, consistent complication rate has been reported and the provided accuracy of coronal alignment correction using conventional HTO techniques falls short. Patient specific instrumentations has been introduced with the aim to reduce complications and to improve the intra-operative accuracy according to the pre-operative plan, which is responsible for the
Spinal surgery deals with the treatment of different pathological conditions of the spine such as tumors, deformities, degenerative disease, infections and traumas. Research in the field of vertebral surgery can be divided into two main areas: 1) research lines transversal to the different branches; 2) specific research lines for the different branches. The transversal lines of research are represented by strategies for the reduction of complications, by the development of minimally invasive surgical techniques, by the development of surgical navigation systems and by the development of increasingly reliable systems for the control of intra-operative monitoring. Instead, specific lines of research are developed within the different branches. In the field of oncological pathology, the current research concerns the development of in vitro models for the study of metastases and research for the study of targeted treatment methods such as electrochemotherapy and mesenchymal stem cells for the treatment of aneurysmal bone cysts. Research in the field of spinal deformities is focused on the development of increasingly minimally invasive methods and systems which, combined with appropriate pharmacological treatments, help reduce trauma, stress and post-operative pain. Scaffolds based on blood clots are also being developed to promote vertebral fusion, a fundamental requirement for improving the outcome of vertebral arthrodesis performed for the treatment of degenerative disc disease. To improve the management and the medical and surgical treatment of vertebral infections, research has focused on the definition of multidisciplinary strategies aimed at identifying the best possible treatment path. Thus, flow-charts have been created which allow to manage the patient suffering from vertebral infection. In addition, dedicated silver-coated surgical instrumentation and bone substitutes have been developed that simultaneously guarantee mechanical stability and reduce the risk of further local infection. In the field of vertebral traumatology, the most recent research studies have focused on the development of methods for the biostimulation of the bone growth in order to obtain, when possible, healing without surgery. Methods have also been developed that allow the minimally invasive percutaneous treatment of fractures by means of vertebral augmentation with PMMA, or more recently with the use of silicone which from a biomechanical point of view has an elastic modulus more similar to that of bone. It is clear that scientific research has changed clinical practice both in terms of medical and surgical management of patients with spinal
Introduction and Objective. In recent studies, robotic-assisted surgical techniques for unicompartmental knee arthroplasty (UKA) have demonstrated superior implant positioning and limb alignment compared to a conventional technique. However, the impact of the robotic-assisted technique on clinical and functional outcomes is less clear. The aim of this study was to compare the gait parameters of UKA performed with conventional and image-free robotic-assisted techniques. Materials and Methods. This prospective, single center study included 66 medial UKA, randomized to a robotic-assisted (n=33) or conventional technique (n=33). Gait analysis was performed on a treadmill at 6 months to identify changes in gait characteristics (walking speed, each degree-of-freedom: flexion–extension, abduction–adduction, internal-external rotation and anterior-posterior displacement).
Abstract. Objectives. High tibial osteotomy for knee realignment is effective at relieving symptoms of knee osteoarthritis but the operation is surgically challenging. A new personalised treatment with simpler surgery using pre-operatively planned measurements from computed tomography (CT) imaging and 3D-printed implants and instrumentation has been designed and is undergoing clinical trial. The aim of this study was to evaluate the early
Introduction and Objective. TKA have shown both excellent long-term survival rate and symptoms and knee function improvement. Despite the good results, the literature reports dissatisfaction rates around 20%. This rate of dissatisfaction could be due to the overstuff that mechanically aligned prostheses could produce during the range of motion. Either size discrepancy between bone resection and prosthetic component and constitutional mechanical tibiofemoral alignment (MTFA) alteration might increase soft tissue tension within the joint, inducing pain and functional limitation. Materials and Methods. Total knee arthroplasties performed between July 2019 and September 2020 were examined and then divided into two groups based on the presence (Group A) or absence (Group B) of patellofemoral overstuff, defined as a thickness difference of more than 2 mm between chosen component and bone resection performed, taking into account at least one of the following: femoral medial and lateral condyle, medial or lateral trochlea and patella. Based on pre and post-operative MTFA measurements, Group A was further divided into two subgroups whether the considered alignment was modified or not. Patients were assessed pre-operatively and at 6 months post-op using the Knee Society Score (KSS), Oxford Knee Score (OKS), Forgotten Joint Score (FJS), Visual Analogue Scale (VAS) and Range of Motion (ROM). Results. One hundred total knee arthroplasties were included in the present study, 69 in Group A and 31 in group B. Mean age and BMI of patients was respectively 71 and 29.2. The greatest percentage of Patellofemoral Overstuff was found at the distal lateral femoral condyle. OKS, KSS functional score, and FJS were statistically significant higher in patients without Patellofemoral Overstuff. Therefore, Group A patients with a non-modified MTFA demonstrated statistically significant better KSS, ROM and FJS. Conclusions. Patellofemoral Overstuff decrease post-operative clinical scores in patients treated with TKA. The conventional mechanically aligned positioning of TKA components might be the primary cause of prosthetic overstuffing leading to worsened
Abstract. Objectives. Osteochondral grafting (OCG) is one treatment strategy for osteoarthritis with good
Purpose. To evaluate the
Purpose. Extraskeletal chondrosarcoma is a rare tumor with an indolent course and high propensity for local recurrence and metastasis. This tumor most commonly presents in the proximal extremities of middle-aged males, and is commonly asymptomatic. Although slow growing, these tumors have a significant risk of eventual relapse and metastases, especially to the lung. There are no clinical trials that investigated the best treatment options for this tumor given its very low incidence. The aim of this study is to present the surgical and
Osteomyelitis is an infection of bone or bone marrow with a concomitant inflammation involving the bone marrow and the surrounding tissues. Chronic osteomyelitis is historically treated in a two-stage fashion with antibiotic-loaded polymethylmethacrylate as local antibacterial therapy. Two-stage surgeries are associated with high morbidity, long hospitalization and high treatment costs. Next to antibiotic releasing biomaterials, S53P4 bioactive glass is a biomaterial that enables one-stage surgery in local treatment of chronic osteomyelitis. S53P4 bioactive glass is gaining interests in recent years in clinical treatment of chronic osteomyelitis in a one-stage fashion due to its antibacterial and bone regenerating capacities. By changing local pH and osmotic pressure S53P4 bioactive glass attack bacteria in a different way as compared to antibiotics. In this presentation, we will present current clinical treatment options for osteomyelitis,
Human mesenchymal stem cells (MSCs) are multipotent stem cells with the ability to differentiate into mesoderm-type cells such as osteoblasts, chondroblast, tenocytes etc. They can be retrieved by different sources, but the number of cells obtained suggested the adipose tissue as a primary harvest site of MSCs. Cells can be harvested using the Coleman procedure, obtaining stromal vascular fraction (SVF), enriched with MSCs, after collagenase digestion. The availability of SVF storage has been envisioned for multiple treatments of the degenerated tissue. Indeed, the use of SVF has been introduced into clinical trials for tissue regeneration for orthopaedic patients. Difficulties of a selective delivery of SVF locally have been previously discussed. Thus, the use of biological scaffolds in order to better localize SVF in the tissue site has been studied. The methodological evolution for the use of SVF in the best possible biological conditions is a milestone for good
While stable long-term
Used routinely in maxillofacial reconstructive surgery, the chondrocostal graft is also applied to hand surgery in traumatic or pathologic indications. The purpose of this overview was to analyze at long-term follow-up the radiological and histological evolution of this autograft, in hand and wrist surgery. We extrapolated this autograft technique to the elbow by using perichondrium. Since 1992, 148 patients have undergone chondrocostal autograft: 116 osteoarthritis of the thumb carpometacarpal joint, 18 radioscaphoid arthritis, 6 articular malunions of the distal radius, 4 kienbock's disease, and 4 traumatic loss of cartilage of the proximal interphalangeal (PIP) joint. Perichondrium autografts were used in 3 patients with elbow osteoarthritis. Magnetic Resonance Imaging (MRI) was performed in 19 patients with a mean follow-up of 68 months (4–159). Histological studies were performed on: i) perioperative chondrocostal grafts (n=3), ii) chondrocostal grafts explanted between 2 and 48 months after surgery (n=10), and iii) perioperative perichondrium grafts (n=2). Whatever the indication, the reconstruction by a chondrocostal/ostochondrocostal or perichondrium graft yielded satisfactory
Successful reconstruction of bone defects requires an adequate filling material that supports regeneration and formation of new bone within the treated defect in an optimal fashion. Currently available synthetic bone graft substitutes cannot fulfill all requirements of the highly complex biological processes involved in physiological bone healing. Due their unphysiologically asynchronous biodegradation properties, their specific foreign material-mediated side effects and complications and their relatively modest overall osteogenic potential, their overall clinical performance typically lags behind conventional bone grafts of human origin. However, defect- and pathology specific combination of synthetic bone graft substitutes exhibiting appropriate carrier properties with therapeutic agents and/or conventional bone graft materials allows creation of biologically enhanced composite constructs that can surpass the biological and therapeutic limits even of autologous bone grafts. This presentation introduces a bone defect reconstruction concept based on biological enhancement of optimal therapeutic agent-carrier composites and provides a rationale for an individual, requirement-specific adaptation of a truly patient-specific reconstruction of bone defects. It represents the pinnacle of the bone defect reconstruction pyramid, founded on the basic principles and prerequisites of complete elimination of the underlying pathology, preservation, augmentation or restoration of mechanical stability of the treated bone segment and creation of a biodegradable scaffold with adequate mechanical integrity. It summarises the current body of relevant experimental and clinical research, presents clinical case examples illustrating the various aspects of the proposed concept as well as early
Fabrication of biogenic coatings with suitable mechanical properties is a key goal in orthopedics, to overcome the limitations of currently available coatings and improve the
The purpose of this study is to evaluate accuracy of tibia cutting and tibia implantation in UKA which used navigation system for tibia cutting and tibia component implantation, and to evaluate
Total Hip Arthroplasty (THA) is a well-established, cost-effective treatment for improving function and alleviating pain in patients who have disabling hip disease with excellent long-term results. Based on the excellent results, there is an ongoing trend for THA to be performed in younger and more active patients, having higher physical demands on their new total joints. Polyethylene (PE) wear and its biological consequences are one of the main causes of implant failure in THA. Macrophages phagocytise PE wear particles and this will result in osteolysis and loss of periprosthetic bone. The risk of these complications can be estimated in relation to the amount of volumetric wear based on two assumptions: that the number of PE particles dispersed in the peri-prosthetic tissues is controlled by the amount of PE wear; and that the development of osteolysis and the resulting aseptic loosening is triggered by these PE particles. Based on these assumptions, a model was developed to estimate the osteolysis-free life of a THA, depending on the Linear Wear Rate (LWR) and femoral head size of the PE bearing. A review of the literature was conducted to provide an estimate of the radiologic osteolysis threshold based on the volumetric wear of the PE bearing. This review demonstrates that this radiologic osteolysis threshold is approximated 670 mm3 for conventional PE. The osteolysis-free life of the THA was estimated by simply dividing this threshold volume by the annual Volumetric Wear Rate (VWR) of the bearing. The annual VWR is basically controlled by two parameters: (1) annual LWR and (2) head size, and was calculated by using published formulae. For 28 mm heads, following osteolysis-free life was determined in function of the annual LWR. LWR: 10 µm/y => 116.6 years / LWR: 25 µm/y => 46.6 years / LWR: 50 µm/y => 23.3 years / LWR: 100 µm/y => 11.6 years. For 40 mm heads, following osteolysis-free life was determined in function of the annual LWR. LWR: 10 µm/y => 57.1 years / LWR: 25 µm/y => 22.9 years / LWR: 50 µm/y => 11.4 years / LWR: 100 µm/y => 5.7 years. The osteolysis-free life determined by this model is in good agreement with the