Summary Statement. A porcine model using Yucatan minipigs was found to be very promising for the investigation of healing around transcutaneous osseointegrated implants. Pigs demonstrated surprising agility and adaptability including the ability to ambulate on three legs during the immediate postoperative period. Introduction. Previous non weight-bearing and weight-bearing caprine, canine and ovine models have evaluated design, material, and biological coating variations in an attempt to improve the wound healing and skin-implant seal around transcutaneous osseointegrated implants. Although these models have primarily been used as a window into the application of transcutaneous osseointegrated implants in humans, some important model characteristics affecting wound healing and infection have been missing including: 1) replication of the physiological tissue response, and 2) availability of a transcutaneous site with sufficient soft tissue coverage. Pig skin, like human, is relatively hairless, tightly attached to the subcutaneous tissue, vascularised by a cutaneous blood supply, and healed by means of epithelialization. Swine have been extensively utilised for superficial and deep wound healing studies and can offer ample soft tissue coverage following a lower limb amputation. Development of a porcine model is important for continued understanding and improvement of weight-bearing transcutaneous osseointegration. Methods. Two male Yucatan mini-pigs (9 months, 36kg) were fit with transcutaneous osseointegrated prostheses using a single-stage transtibial amputation and prosthesis implantation procedure. The endo-prosthesis consisted of a cylindrical intraosseous threaded section and a smooth transcutaneous section. The transcutaneous sections were smooth to promote epithelialization and deter direct skin-implant adhesion. The implants were custom manufactured from medical grade Ti-6Al-4V alloy. The exo-prosthesis, consisting of an adjustable length leg and foot, was attached by clamp to the supercutaneous portion of the implant following either one or two days of sling constraint to limit initial weight-bearing. Various exo-prosthesis designs and configurations were trialed. The animals’ behavior and gait were closely observed. Weight-bearing was monitored using a force plate. At 5 and 8 weeks,