Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1256 - 1265
1 Nov 2022
Keene DJ Alsousou J Harrison P O’Connor HM Wagland S Dutton SJ Hulley P Lamb SE Willett K

Aims

To determine whether platelet-rich plasma (PRP) injection improves outcomes two years after acute Achilles tendon rupture.

Methods

A randomized multicentre two-arm parallel-group, participant- and assessor-blinded superiority trial was undertaken. Recruitment commenced on 28 July 2015 and two-year follow-up was completed in 21 October 2019. Participants were 230 adults aged 18 years and over, with acute Achilles tendon rupture managed with non-surgical treatment from 19 UK hospitals. Exclusions were insertion or musculotendinous junction injuries, major leg injury or deformity, diabetes, platelet or haematological disorder, medication with systemic corticosteroids, anticoagulation therapy treatment, and other contraindicating conditions. Participants were randomized via a central online system 1:1 to PRP or placebo injection. The main outcome measure was Achilles Tendon Rupture Score (ATRS) at two years via postal questionnaire. Other outcomes were pain, recovery goal attainment, and quality of life. Analysis was by intention-to-treat.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 24 - 24
1 Apr 2013
Kawakami Y Kuroda T Matsumoto T Kwon S Ii M Kawamoto A Mifune Y Shoji T Kuroda R Kurosaka M Asahara T
Full Access

Introduction. CXC chemokine receptor 4 (CXCR4) is a specific receptor for stromal-derived-factor 1 (SDF-1). SDF-1/CXCR4 interaction contributes to the regulation of endotherial progenitor cell (EPC) recruitment in ischemic tissues. The purpose of this study is to investigate the mechanistic function of CXCR4 on EPCs for bone fracture healing. Materials and methods. We made CXCR4 gene knockout mice using the Cre/loxP system. A reproducible model of femoral fracture was created in both Tie2-Cre CXCR4 knockout mice (CXCR4KO) and wild type mice (control). To evaluate gain function of the SDF-1/CXCR4 pathway, we set three groups of the SDF-1 intraperitoneally injected group, wild type group, and SDF-1 injected CXCR4 KO group. Results. In morphological examinations, relative callus area at week 2 was significantly greater in control group. Real time RT-PCR analysis showed that the gene expressions of angiogenic and osteogenic markers were higher in wild type group. CXCR4KO group represented a significantly lower perfusion value at fracture site than control group. In gain function study, the fracture in the SDF-1 injected group is significantly faster healed. Conclusion. Our results indicated the significance of SDF-1/CXCR4 signal in EPCs to bone fracture healing. This study also suggested that the promotion of CXCR4/SDF-1 signal on EPCs lead to the acceleration of bone fracture healing for new therapeutic strategies to fracture repair


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1144 - 1151
1 Aug 2015
Waki T Lee SY Niikura T Iwakura T Dogaki Y Okumachi E Kuroda R Kurosaka M

MicroRNAs (miRNAs ) are small non-coding RNAs that regulate gene expression. We hypothesised that the functions of certain miRNAs and changes to their patterns of expression may be crucial in the pathogenesis of nonunion. Healing fractures and atrophic nonunions produced by periosteal cauterisation were created in the femora of 94 rats, with 1:1 group allocation. At post-fracture days three, seven, ten, 14, 21 and 28, miRNAs were extracted from the newly generated tissue at the fracture site. Microarray and real-time polymerase chain reaction (PCR) analyses of day 14 samples revealed that five miRNAs, miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p, were highly upregulated in nonunion. Real-time PCR analysis further revealed that, in nonunion, the expression levels of all five of these miRNAs peaked on day 14 and declined thereafter.

Our results suggest that miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p may play an important role in the development of nonunion. These findings add to the understanding of the molecular mechanism for nonunion formation and may lead to the development of novel therapeutic strategies for its treatment.

Cite this article: Bone Joint J 2015; 97-B:1144–51.


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1132 - 1137
1 Aug 2016
Lawendy A Bihari A Sanders DW Badhwar A Cepinskas G

Aims

Compartment syndrome results from increased intra-compartmental pressure (ICP) causing local tissue ischaemia and cell death, but the systemic effects are not well described. We hypothesised that compartment syndrome would have a profound effect not only on the affected limb, but also on remote organs.

Methods

Using a rat model of compartment syndrome, its systemic effects on the viability of hepatocytes and on inflammation and circulation were directly visualised using intravital video microscopy.


Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives

The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics.

Methods

Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant).


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 539 - 543
1 Apr 2015
Lawendy A Bihari A Sanders DW McGarr G Badhwar A Cepinskas G

Compartment syndrome, a devastating consequence of limb trauma, is characterised by severe tissue injury and microvascular perfusion deficits. We hypothesised that leucopenia might provide significant protection against microvascular dysfunction and preserve tissue viability. Using our clinically relevant rat model of compartment syndrome, microvascular perfusion and tissue injury were directly visualised by intravital video microscopy in leucopenic animals. We found that while the tissue perfusion was similar in both groups (38.8% (standard error of the mean (sem) 7.1), 36.4% (sem 5.7), 32.0% (sem 1.7), and 30.5% (sem 5.35) continuously-perfused capillaries at 45, 90, 120 and 180 minutes compartment syndrome, respectively versus 39.2% (sem 8.6), 43.5% (sem 8.5), 36.6% (sem 1.4) and 50.8% (sem 4.8) at 45, 90, 120 and 180 minutes compartment syndrome, respectively in leucopenia), compartment syndrome-associated muscle injury was significantly decreased in leucopenic animals (7.0% (sem 2.0), 7.0%, (sem 1.0), 9.0% (sem 1.0) and 5.0% (sem 2.0) at 45, 90, 120 and 180 minutes of compartment syndrome, respectively in leucopenia group versus 18.0% (sem 4.0), 23.0% (sem 4.0), 32.0% (sem 7.0), and 20.0% (sem 5.0) at 45, 90, 120 and 180 minutes of compartment syndrome in control, p = 0.0005). This study demonstrates that the inflammatory process should be considered central to the understanding of the pathogenesis of cellular injury in compartment syndrome.

Cite this article: Bone Joint J 2015;97-B:539–43