Advertisement for orthosearch.org.uk
Results 1 - 20 of 39
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 69 - 69
1 May 2017
Petra S Michal V Pavel D Regina F Eva K Jiri G
Full Access

Background. Inflammation and chemokines play a pivotal role in aseptic loosening (AL) and prosthetic joint infection (PJI) of total joint arthroplasty (TJA). Recently, the Duffy antigen receptor for chemokines (DARC) on erythrocytes was identified as a potent chemokine receptor able to bind and carry without deactivating a wide range of CXC and CC chemokines from circulation to tissues. The role of DARC and its functional polymorphism (SNP) influencing the number of the DARC molecules on the erythrocytes in AL/PJI has not been studied yet. Methods. We genotyped functional polymorphism in the DARC gene (rs12075) using MassArray technology (Agena Bioscience) in 354 patients with TJA (hip and knee arthroplasties). Patients were further subdivided into those with a complication (AL, n = 110; PJI, n = 126) and a control group without complications for at least 10 years (n = 118). Statistics was performed by Plink 1.07 and relative entropy. Results. Among our TJA patients, the rs12075 *G allele was more frequent in patients with a failure (46.6%) compared to those without complications (36.0%, P = 0.007, OR = 1.55, 95%CI = 1.13–2.14). The rs12075 *G allele was overrepresented mainly in patients with AL (49.5%, P = 0.004, OR = 1.74, 95%CI = 1.20–2.54), a trend was observed in PJI (44.0%, P = 0.071, OR =1.40, 95%CI = 0.97–2.01). This SNP is located in a coding region in the DARC gene, and the *G allele is associated with more DARC molecules on erythrocytes, thus able to bind and transport more CCL2, CCL5, CCL18 involved in the pathogenesis of AL/PJI from circulation to the periprosthetic tissue. Conclusions. Our data nominate erythrocyte DARC as a novel molecule in pathogenesis of aseptic loosening of TJA. The hypothesis that DARC may serve as a chemokine reservoir and shuttle chemokines from circulation to the joint surroundings should be investigated in future studies. Level of evidence IV. Evidence from well-designed case-control and cohort studies. The study was approved by the Ethical Committee of Palacky University and Faculty


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 155 - 162
1 Jan 1999
Nakashima Y Sun D Trindade MCD Chun LE Song Y Goodman SB Schurman DJ Maloney WJ Smith RL

Particulate wear debris is associated with periprosthetic inflammation and loosening in total joint arthroplasty. We tested the effects of titanium alloy (Ti-alloy) and PMMA particles on monocyte/macrophage expression of the C-C chemokines, monocyte chemoattractant protein-1 (MCP-1), monocyte inflammatory protein-1 alpha (MIP-1α), and regulated upon activation normal T expressed and secreted protein (RANTES). Periprosthetic granulomatous tissue was analysed for expression of macrophage chemokines by immunohistochemistry. Chemokine expression in human monocytes/macrophages exposed to Ti-alloy and PMMA particles in vitro was determined by RT-PCR, ELISA and monocyte migration. We observed MCP-1 and MIP-1α expression in all tissue samples from failed arthroplasties. Ti-alloy and PMMA particles increased expression of MCP-1 and MIP-1α in macrophages in vitro in a dose- and time-dependent manner whereas RANTES was not detected. mRNA signal levels for MCP-1 and MIP-1α were also observed in cells after exposure to particles. Monocyte migration was stimulated by culture medium collected from macrophages exposed to Ti-alloy and PMMA particles. Antibodies to MCP-1 and MIP-1α inhibited chemotactic activity of the culture medium samples. Release of C-C chemokines by macrophages in response to wear particles may contribute to chronic inflammation at the bone-implant interface in total joint arthroplasty


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 2 | Pages 288 - 291
1 Mar 2003
Sampathkumar K Jeyam M Evans CE Andrew JG

Aseptic loosening of orthopaedic implants is usually attributed to the action of wear debris from the prosthesis. Recent studies, however, have also implicated physical pressures in the joint as a further cause of loosening. We have examined the role of both wear debris and pressure on the secretion of two chemokines, MIP-1α and MCP-1, together with M-CSF and PGE2, by human macrophages in vitro. The results show that pressure alone stimulated the secretion of more M-CSF and PGE. 2. when compared with control cultures. Particles alone stimulated the secretion of M-CSF and PGE. 2. , when compared with unstimulated control cultures, but did not stimulate the secretion of the two chemokines. Exposure of macrophages to both stimuli simultaneously had no synergistic effect on the secretion of the chemokines, but both M-CSF and PGE. 2. were increased in a synergistic manner. Our findings suggest that pressure may be an initiating factor for the recruitment of cells into the periprosthetic tissue


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 108 - 108
1 Nov 2018
Ivanovska A Grolli S Balogh L Conti V Ravanetti F Schneider A Pöstényi Z Gazza F Borghetti P Cacchioli A
Full Access

Mesenchymal stem/stromal cells (MSC) have the ability to home and migrate towards injured and inflamed tissues which can be useful as a minimally invasive systemic approach to deliver MSC to the site of damaged articular surface in arthritis in human and veterinary patients. From a molecular point of view, the CXCR4/SDF-1 plays an important role in this phenomenon and can be used as a target to enhance the therapeutic efficacy of culture expanded MSC. It has been demonstrated that extensive in vitro expansion down-regulates CXCR4 expression in human, murine and canine MSCs hindering their therapeutic efficacy. Therefore, the aim of the present study was to assess the effect of hypoxia and basic fibroblast growth factor (bFGF) pre-conditioning on CXCR4 and SDF-1 expression in canine adipose derived MSC (cAT-MSC). MSC were isolated from subcutaneous adipose tissue of two adult Beagle dogs (n=2; 3–5 years old, 9–12kg) and cultured under standard conditions (5%CO2, 37°C). Cells at passage 3 were then cultured in hypoxia (2%O2) and normoxia, with supplementation of 1 and 5 ng/ml bFGF for 24h. MTT assay, flow cytometry, immunohistochemistry and qRT-PCR analysis were conducted to assess respectively the modulation effect on cell proliferation, CXCR4 protein expression and CXCR4 and SDF-1 gene expression. Cell proliferation increased proportionally with the increasing bFGF concentrations, with a statistically significant higher proliferative rate in normoxic conditions (p<0.05). The gene expression of CXCR4 and SDF-1 increased in hypoxic conditions with bFGF supplementation (p<0.05). bFGF supplementation increased cytoplasmatic expression of CXCR4 in hypoxic conditions (p<0.05), however the surface expression remained low in all culture conditions. The described pre-conditioning method can be used for the enhancement of the therapeutic potential of systemically administered canine AT-MSC and can have a relevant translational character for the optimization of culturing protocols of human adipose derived MSC.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 78 - 78
1 Nov 2018
Manferdini C Paolella F Gabusi E Cattini L Schrezenmeier H Lisignoli G
Full Access

Mesenchymal stromal cells (MSCs) are promising candidate for cell therapy in osteoarthritis (OA) patients since that they exert anti-inflammatory, immunomodulatory, anti-fibrotic and anti-hypertrophic effects in the joint tissues. However, little is known about the OA milieu factors that could enhance the migration and tissue specific engraftment of exogenously injected MSC for successful regenerative cell therapy. GMP-clinical grade adipose stromal cells (ASC) were evaluated both in normoxic and hypoxic (2%O. 2. ) conditions, with or without OA synovium milieu. We found that both OA synovial fluids and OA synoviocytes derived conditioned medium (CM) contain approximately the same amounts of different cytokines/chemokines (i.e. IL6, CXCL8, CXCL10, CXCL12, CCL2, CCL3, CCL4, CCL5, CCL11). ASC migration was significantly increased by both OA synovium milieu and not affected by normoxic or hypoxic condition. We identify that ASC migration was mainly influenced by different macrophage chemokines (i.e. CCL2, CCL3, CCL4). In hypoxic condition basal GMP-ASC showed an increase of CXCR3 and CCR3, a decrease of CCR1 and CCR5 receptors, while CXCR1, CXCR4, CXCR7, CCR2 and IL6R were not modulated. The addition of OA synovium milieu induced CCR3, CXCR3 and IL6R and decreased CCR1 and not affected CCR2, CCR5, CXCR1, CXCR4, CXCR7 in hypoxic condition. Our data demonstrated that GMP-ASC chemotaxis was mainly induced by macrophage chemokines. Moreover, we evidenced that hypoxia, as better condition to mimic the OA milieu, affected some GMP-ASC cytokine/chemokine receptors, suggesting the involvement of specific chemokine-receptor axis


Bone & Joint Research
Vol. 6, Issue 6 | Pages 358 - 365
1 Jun 2017
Sanghani-Kerai A Coathup M Samazideh S Kalia P Silvio LD Idowu B Blunn G

Objectives. Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration. Methods. MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts. Results. MSCs from OVX rats migrate significantly (p < 0.05) less towards SDF-1 (9%, . sd. 5%) compared with MSCs from adult (15%, . sd. 3%) and young rats (25%, . sd. 4%). Cells transfected with CXCR4 migrated significantly more towards SDF-1 compared with non-transfected cells, irrespective of whether these cells were from OVX (26.5%, . sd. 4%), young (47%, . sd. 17%) or adult (21%, . sd. 4%) rats. Transfected MSCs differentiated to osteoblasts express CXCR4 but do not migrate towards SDF-1. Conclusions. MSC migration is impaired by age and osteoporosis in rats, and this may be associated with a significant reduction in bone formation in osteoporotic patients. The migration of stem cells can be ameliorated by upregulating CXCR4 levels which could possibly enhance fracture healing in osteoporotic patients. Cite this article: A. Sanghani-Kerai, M. Coathup, S. Samazideh, P. Kalia, L. Di Silvio, B. Idowu, G. Blunn. Osteoporosis and ageing affects the migration of stem cells and this is ameliorated by transfection with CXCR4. Bone Joint Res 2017;6:–365. DOI: 10.1302/2046-3758.66.BJR-2016-0259.R1


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 91 - 91
2 Jan 2024
Graça A Rodrigues M Domingues R Gomes M Gomez-Florit M
Full Access

Macrophages play a critical role in innate immunity by promoting or inhibiting tissue inflammation and repair. Classically, macrophages can differentiate into either pro-inflammatory (M1) or pro-reparative (M2) phenotypes in response to various stimuli. Therefore, this study aimed to address how extracellular vesicles (EVs) derived from polarized macrophages can affect the inflammatory response of tendon cells. For that purpose, human THP-1 cells were stimulated with lipopolysaccharide (LPS), and interleukins -4 and -13 (IL- 4, IL-13), to induce macrophages polarization into M1, M2, and hybrid M1/M2 phenotypes. Subsequently, the EVs were isolated from the culture medium by ultracentrifugation. The impact of these nanovesicles on the inflammation and injury scenarios of human tendon-derived cells (hTDCs), which had previously been stimulated with interleukin- 1 beta (IL-1ß) to mimic an inflammatory scenario, was assessed. We were able to isolate three different nanovesicles populations, showing the typical shape, size and surface markers of EVs. By extensively analyzing the proteomic expression profiles of M1, M2, and M1/M2, distinct proteins that were upregulated in each type of macrophage-derived EVs were identified. Notably, most of the detected pro- inflammatory cytokines and chemokines had higher expression levels in M1-derived EVs and were mostly absent in M2-derived EVs. Hence, by acting as a biological cue, we observed that M2 macrophage-derived EVs increased the expression of the tendon-related marker tenomodulin (TNMD) and tended to reduce the presence of pro-inflammatory markers in hTDCs. Overall, these preliminary results show that EVs derived from polarized macrophages might be a potential tool to modulate the immune system responses becoming a valuable asset in the tendon repair and regeneration fields worthy to be further explored


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 6 - 6
4 Apr 2023
Jamieson S Mawdesley A Hyde P Kirby J Tyson-Capper A
Full Access

Total hip replacement (THR) is indicated for patients with osteoarthritis where conservative treatment has failed. Metal alloys used in THR implants such as cobalt-chromium (CoCr) have been known to cause pro-inflammatory reactions in patients, therefore leading to the need for costly revision surgery. This study therefore aimed to investigate the role of TLR4 in the activation of a human osteoblast model in response to CoCr particles in vitro. Human osteoblasts (MG-63 cell line) were seeded at a density of 100,000 cells and treated with 0.5, 5, 50mm3 CoCr particles per cell for 24-hours. Trypan blue and the XTT Cell Proliferation Kit II were then used in conjunction with the cells to assess CoCr-induced cytotoxicity. Cells were pre-treated with a commercially available TLR4-specific small molecule inhibitor (CLI-095) for 6 hours. Untreated cells were used as a negative control and lipopolysaccharide (LPS) was used as a positive control. Following treatment the cell supernatant was collected and used for enzyme-linked immunosorbant assay (ELISA) to measure the secretion of interleukin-8 (IL-8), CXCL10, and interleukin-6 (IL-6). Trypan blue and XTT analysis showed that there was no significant changes to cell viability or proliferation at any dose used of CoCr after 24 hours. There was a significant increase in protein secretion of IL-8 (p<0.001), CXCL10 (p<0.001), and IL-6 (p<0.001) in the cells which received the highest dosage of CoCr. This pro-inflammatory secretory response was ameliorated by TLR4 blockade (p<0.001). CoCr particles are not cytotoxic to osteoblasts but they do induce pro-inflammatory changes as characterised by increased secretion of chemokines IL-8, CXCL10, and IL-6. These responses occur via a TLR4-mediated pathway and upon inhibition they can be effectively ameliorated. This is particularly important as TLR4 could be a potential target for pharmacological intervention used in patients experiencing immunological reactions to metal implant debris


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 143 - 143
2 Jan 2024
Alkhrayef M Muhammad H Hosni RA McCaskie A Birch M
Full Access

Tissue repair is believed to rely on tissue-resident progenitor cell populations proliferating, migrating, and undergoing differentiation at the site of injury. During these processes, the crosstalk between mesenchymal stromal/stem cells (MSCs) and macrophages has been shown to play a pivotal role. However, the influence of extracellular matrix (ECM) remodelling in this crosstalk, remains elusive. Human MSCs cultured on tissue culture plastic (TCP) and encased within fibrin in vitro were treated with/without TNFα and IFNγ. Human monocytes were cocultured with untreated/pretreated MSCs on TCP or within fibrin. After seven days, the conditioned media (CM) were collected. Human chondrocytes were exposed to CM in a migration assay. The impact of TGFβ was assessed by adding an inhibitor (TGFβRi). Cell activity was assessed using RT-qPCR and XL-protein-profiler-array. Previously, we demonstrated that culturing human MSCs within 3D-environments significantly enhances their immunoregulatory activity in response to pro-inflammatory stimuli. In this study, monocytes were co-cultured with MSCs within fibrin, acquiring a distinct M2-like repair macrophage phenotype in contrast to TCP co-cultures. MSC/macrophage CM characterization using a protein array demonstrated differences in release of several factors, including chemokines, growth factors and ECM components. Chondrocyte migration was significantly reduced in CM from untreated MSC/monocytes co-cultures in fibrin compared to CM of untreated MSCs/monocytes on TCP. This impact on migration was not seen with chondrocytes cultured in CM of monocytes co-cultured with pretreated MSCs in fibrin. The CM of monocytes co-cultured with pretreated MSCs in fibrin up-regulates COL2A1 and SOX9 compared to TCP. Chondrogenesis and migration were TGFβ dependent. MSC/macrophage crosstalk and responsiveness to cytokines are influenced by the ECM environment, which subsequently impacts tissue-resident cell migration and chondrogenesis. The direct effects of ECM on MSC/macrophage secretory phenotype is complemented by the dynamic ECM binding and release of growth factors such as TGFβ


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 88 - 88
4 Apr 2023
Anjum S Kirby J Deehan D Tyson-Capper A
Full Access

The most common reason for revision surgery of total hip replacements is aseptic loosening of implants secondary to osteolysis, which is caused by immune-mediated reactions to implant debris. These debris can cause pseudotumour formation. As revision surgery is associated with higher mortality and infection, it is important to understand the pro-inflammatory process to improve implant survival. Toll-like receptor 4 (TLR4) has been shown to mediate immune responses to cobalt ions. Statin use in epidemiological studies has been associated with reduced risk of revision surgery. In-vitro studies have demonstrated the potential for statins to reduce orthopaedic debris-induced immune responses and there is evidence that statins can modulate TLR4 activity. This study investigates simvastatin's effect on orthopaedic biomaterial-mediated changes in protein expression of key inflammatory markers and soluble-ICAM-1 (sICAM-1), an angiogenic factor implicated in pseudotumour formation. Human macrophage THP-1 cells were pre-incubated with 50µM simvastatin for 2-hours or a vehicle control (VC), before being exposed to 0.75mM cobalt chloride, 50μm3 per cell zirconium oxide or LPS as a positive control, in addition to a further 24-hour co-incubation with 50µM simvastatin or VC. Interleukin −8 (IL-8), sICAM-1, chemokine ligand 2 (CCL2), CCL3 and CCL4 protein secretion was measured by enzyme-linked immunosorbent assay (ELISA). GraphPad Prism 10 was used for statistical analysis including a one-way ANOVA. Pre-treatment with simvastatin significantly reduced LPS and cobalt-mediated IL-8 secretion (n=3) and sICAM-1 protein secretion (n=2) in THP-1 cells. Pre-treatment with simvastatin significantly reduced LPS-mediated but not cobalt ion-mediated CCL2 (n=3) and CCL3 protein (n=3) secretion in THP-1 cells. Simvastatin significantly reduced zirconium oxide-mediated CCL4 secretion (n=3). Simvastatin significantly reduced cobalt-ion mediated IL-8 and sICAM-1 protein secretion in THP-1 cells. This in-vitro finding demonstrates the potential for simvastatin to reduce recruitment of leukocytes which mediate the deleterious inflammatory processes driving implant failure


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 55 - 55
17 Nov 2023
Alkhrayef M Muhammad H Hosni RA McCaskie A Birch M
Full Access

Abstract. Objectives. Tissue repair is believed to rely on tissue-resident progenitor cell populations proliferating, migrating, and undergoing differentiation at the site of injury. During these processes, the crosstalk between mesenchymal stromal/stem cells (MSCs) and macrophages has been shown to play a pivotal role. However, the influence of extracellular matrix (ECM) remodelling in this crosstalk, remains elusive. Methods. Human MSCs cultured on tissue culture plastic (TCP) and encased within fibrin in vitro were treated with/without TNFα and IFNγ. Human monocytes were cocultured with untreated/pretreated MSCs on TCP or within fibrin. After seven days, the conditioned media (CM) were collected. Human chondrocytes were exposed to CM in a migration assay. The impact of TGFβ was assessed by adding an inhibitor (TGFβRi). Cell activity was assessed using RT-qPCR and XL-protein-profiler-array. Results. Previously, we demonstrated that culturing human MSCs within 3D-environments significantly enhances their immunoregulatory activity in response to pro-inflammatory stimuli. In this study, monocytes were co-cultured with MSCs within fibrin, acquiring a distinct M2-like repair macrophage phenotype in contrast to TCP co-cultures. MSC/macrophage CM characterization using a protein array demonstrated differences in release of several factors, including chemokines, growth factors and ECM components. Chondrocyte migration was significantly reduced in CM from untreated MSC/monocytes co-cultures in fibrin compared to CM of untreated MSCs/monocytes on TCP. This impact on migration was not seen with chondrocytes cultured in CM of monocytes co-cultured with pretreated MSCs in fibrin. The CM of monocytes co-cultured with pretreated MSCs in fibrin up-regulates COL2A1 and SOX9 compared to TCP. Chondrogenesis and migration were TGFβ dependent. Conclusion. MSC/macrophage crosstalk and responsiveness to cytokines are influenced by the ECM environment, which subsequently impacts tissue-resident cell migration and chondrogenesis. The direct effects of ECM on MSC/macrophage secretory phenotype is complemented by the dynamic ECM binding and release of growth factors such as TGFβ. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 16 - 16
1 Dec 2022
Ragni E Orfei CP Colombini A Viganò M De Luca P Libonati F de Girolamo L
Full Access

In the context of regenerative medicine for the treatment of musculoskeletal pathologies mesenchymal stromal cells (MSCs) have shown good results thanks to secretion of therapeutic factors, both free and conveyed within the extracellular vesicles (EV), which in their totality constitute the “secretome”. The portfolio and biological activity of these molecules can be modulated by both in vitro and in vivo conditions, thus making the analysis of these activities very complex. A deep knowledge of the targets regulated by the secretome has become a matter of fundamental importance and a homogeneous and complete molecular characterization is still lacking in the field of applications for the musculoskeletal system. Therefore, the aim of this work was to characterize the secretome obtained from adipose-derived MSCs (ASCs), and its modulation after pre-conditioning of the ASCs. Pre-conditioning was done by culturing cells in the presence of i) high levels of IFNγ, as proposed for the production of clinical grade secretome with enhanced regenerative potential, ii) low levels of inflammatory stimuli, mimicking conditions found in the osteoarthritis (OA) synovial fluid. Furthermore, EVs ability to migrate within cartilage, chondrocyte and synoviocytes obtained from OA patients was evaluated. The data showed that more than 50 cytokines / chemokines and more than 200 EV-microRNAs are detectable at various intensity levels in ASCs secretomes. The majority of the most abundantly present molecules are involved in the remodelling of the extracellular matrix and in the homeostasis and chemotaxis of inflammatory cells including macrophages, which in OA are often characterized by an M1 inflammatory polarization, promoting their transition to an M2 anti-inflammatory phenotype. Inflammatory priming with IFNγ and synovial fluid-like conditions were able to further increase the ability of the secretome to interact with inflammatory cells and modulate their migration. Finally, the penetration of the EVs in the cartilage explants resulted a rapid process, which begins a few minutes after administration of the EVs that are able to reach a depth of 30-40 μm in 5 hours. The same capacity for interaction was also verified in chondrocytes and synoviocytes isolated from the cartilage and synovial membrane of OA patients. Thanks to the soluble factors and EV-microRNAs, the ASCs secretome has shown a strong propensity to modulate the inflammatory and degenerative processes that characterize OA. The inflammatory pre-conditioning through high concentrations of inflammatory molecules or in conditions similar to the synovial fluid of OA patients was able to increase this capacity by increasing their chemotactic power. The microscopy data also support the hypothesis of the ability of MSC-EVs to influence the chondrocytes residing in the ECM of the cartilage and the synovial cells of the synovial membrane through active interaction and the release of their therapeutic content


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 88 - 88
2 Jan 2024
Kim M Kim, K
Full Access

There is still no consensus on which concentration of mesenchymal stem cells (MSCs) to use for promoting fracture healing in a rat model of long bone fracture. To assess the optimal concentration of MSCs for promoting fracture healing in a rat model. Wistar rats were divided into four groups according to MSC concentrations: Normal saline (C), 2.5 × 106 (L), 5.0 × 106 (M), and 10.0 × 106 (H) groups. The MSCs were injected directly into the fracture site. The rats were sacrificed at 2 and 6 자 post-fracture. New bone formation [bone volume (BV) and percentage BV (PBV)] was evaluated using micro-computed tomography (CT). Histological analysis was performed to evaluate fracture healing score. The protein expression of factors related to MSC migration [stromal cell-derived factor 1 (SDF-1), transforming growth factor-beta 1 (TGF-β1)] and angiogenesis [vascular endothelial growth factor (VEGF)] was evaluated using western blot analysis. The expression of cytokines associated with osteogenesis [bone morphogenetic protein-2 (BMP-2), TGF-β1 and VEGF] was evaluated using real-time polymerase chain reaction. Micro-CT showed that BV and PBV was significantly increased in groups M and H compared to that in group C at 6 wk post-fracture (P = 0.040, P = 0.009; P = 0.004, P = 0.001, respectively). Significantly more cartilaginous tissue and immature bone were formed in groups M and H than in group C at 2 and 6 wk post-fracture (P = 0.018, P = 0.010; P = 0.032, P = 0.050, respectively). At 2 wk post fracture, SDF-1, TGF-β1 and VEGF expression were significantly higher in groups M and H than in group L (P = 0.031, P = 0.014; P < 0.001, P < 0.001; P = 0.025, P < 0.001, respectively). BMP-2 and VEGF expression were significantly higher in groups M and H than in group C at 6 wk postfracture (P = 0.037, P = 0.038; P = 0.021, P = 0.010). Compared to group L, TGF-β1 expression was significantly higher in groups H (P = 0.016). There were no significant differences in expression levels of chemokines related to MSC migration, angiogenesis and cytokines associated with osteogenesis between M and H groups at 2 and 6 wk post-fracture. The administration of at least 5.0 × 106 MSCs was optimal to promote fracture healing in a rat model of long bone fractures


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 341 - 341
1 Jul 2014
Ito H Fujii T Kasahara T Ishikawa M Furu M Shibuya H Matsuda S
Full Access

Summary Statement. In articular cartilage defects, chemokines are upregulated and potentially induce the migration of bone marrow cells to accelerate the healing processes. Introduction. The treatment of damaged articular cartilages is one of the most challenging issues in sports medicine and in aging societies. In the microfracture technique for the treatment of articular cartilage defects, bone marrow cells are assumed to migrate from the bone marrow. Bone marrow cells are well-known for playing crucial roles in the healing processes, but how they can migrate from underlying bone marrow remains to be investigated. We have previously shown that SDF-1, one of chemokines, play crucial roles in the recruitment of mesenchymal stem cells in bone healing processes, and the induction of SDF-1 can induce a successful bone repair. If the migration can be stimulated by any means in the cartilage defects, a better result can be expected. The aim of this study was to elucidate the mechanisms of the migration of bone marrow cells and which factors contribute to the processes. Materials & Methods. Articular cartilage defects of 2 mm of diameter were created by drilling the cartilage with a wire to just the subchondral bone in 5-week-old SD rats. The width and depth of the created defects were confirmed by HE staining in histology. The healing tissues were harvested at days 2, 6, and 14 after the operation, and total RNAs were entracted. PCR array was conducted according to the manufacturer's instruction. Quantitative PCR (qPCR) was performed using cDNA of the healing tissues. Bone marrow cells were harvested from 5-week-old SD rat, and a standard migration assay was performed using chemokines. Results. CCL2, CCL3, CCL7 and CCL12 were upregulated in the healing tissues of cartilage defects shown by PCR array. The expression pattterns were confirmed by an expression analysis by qPCR. Both CCL2 and CCL3 induced the migration of bone marrow cells in the in vitro migration assay. Discussion/Conclusion. This study showed for the first time that CCL chemokines are upregulated in the articular cartilage defects and induce the migration of bone marrow cells. These results lead to an innovative measures along with an appropriate delivery method in induction the migration of bone marrow cells from the underlying bone marrow to stimulate articular cartilage healing processes


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 93 - 93
1 Nov 2018
Frapin L Clouet J Henry N Chedeville C Guicheux J Visage CL
Full Access

The recent description of progenitor/stem cells in degenerated intervertebral discs (IVDs) raised the possibility of harnessing their regenerative capacity for endogenous repair. The aim of this work is to develop an intradiscal polysaccharide microbead-based delivery system for the sequential release of chemokines and nucleopulpogenic factors. This delivery system would sequentially contribute to 1) the recruitment of resident progenitors (CXCL12 or CCL5), 2) the differentiation of the mobilized progenitors (TGF-β1 and GDF5), and 3) the subsequent regeneration of NP. To determine the effects of chemokines on in vitro cell recruitment, human mesenchymal stem cells (MSC) were cultured in Transwells for 4h, with or without CXCL12 or CCL5. In parallel, pullulan microbeads (PMBs) (100µm) were prepared by a simultaneous crosslinking protocol coupled to a water-in-oil emulsification process. Freeze-dried PMBs were loaded with biological factors then release assays were performed at 37°C for 21 days and supernatant concentrations were measured by ELISA. As compared to untreated MSC, MSC migration was improved with a 3.9 (CXCL12) and 7.5 (CCL5) fold increase, respectively. All factors were successfully adsorbed on PMBs and a burst release within the 1. st. day was observed. At day 7, 27.5% and 83% of CXCL12 and CCL5 were released, respectively and at day 21, 20% and 100% of TGF-β1 and GDF5 were released, respectively. Currently, released cytokine bioactivity is being analysed and an ex vivo ovine IVD model is developed to determine the repair potential of this controlled release approach


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 28 - 28
1 Jan 2019
Mawdesley A Tyson-Capper A Kirby J Tipper JL
Full Access

Increased revision rates and early failure of Metal-on-Metal (MoM) hip replacements are often due to adverse reaction to metal debris (ARMD). Cobalt is a major component of MoM joints and can initiate an immune response via activation of the innate immune receptor Toll-like receptor 4 (TLR4). This leads to increased secretion of inflammatory cytokines/chemokines e.g. CCL3 and CCL4. The aim of this study was to evaluate whether TLR4-specific neutralising antibodies can prevent cobalt-mediated activation of TLR4. MonoMac 6 (MM6) cells, a human macrophage cell line, were treated with two different TLR4-specific monoclonal antibodies followed by 0.75mM of cobalt chloride (CoCl2). Lipopolysaccharide (LPS), a known TLR4 agonist was used as a positive control. Enzyme-linked immunosorbent assay (ELISA) was used to assess CCL3/CCL4 protein secretion and real time- polymerase chain reaction (RT-PCR) allowed quantification of CCL3/CCL4 gene expression. MM6 cells treated with cobalt and LPS up-regulate CCL3 and CCL4 gene expression and protein secretion. MM6 cells pre-treated with both monoclonal antibodies prior to stimulation with 0.75mM CoCl2 for 16 hours demonstrated significant inhibition of both CCL3 and CCL4 secretion as well as gene expression (both p=<0.0001). One of the antibodies failed to inhibit chemokine expression and secretion in LPS treated cells. This study identifies for the first time the use of TLR4-specific monoclonal antibodies to prevent cobalt activation of TLR4 and subsequent inflammatory response. This finding demonstrates the potential to exploit TLR4 inhibition in the context of MoM joint replacements by contributing to the development of novel therapeutics designed to reduce the incidence of ARMD


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 204 - 204
1 Jul 2014
Drynda A Singh G Buchhorn G Kliche S Feuerstein B Ruetschi M Lohmann C
Full Access

Summary Statement. CXCR4 gene and protein expression is regulated in a dose and time-dependent manner by metallic wear debris but not polyethylene wear debris in vitro and in vivo. Introduction. Progressive osteolysis leading to aseptic loosening among metal-on-metal (MoM) total hip arthroplasties (THA's), and adverse reactions to metallic debris (ARMD) are increasing causes for concern among existing patients who have been implanted with MoM hip replacements. Close surveillance of these patients is necessary and difficulties lie in early detection as well as differentiating low-grade infection from ARMD in the early stages. Several inflammatory markers have been investigated in this context, but to date, none is specific with regards to the offending material. In earlier studies, it has been shown that osteoblastic phenotypes and differentiation are regulated by different types of wear particles. Methods. In vitro experiments were performed using MG63 and SaOs-2 osteoblast-like cells co-cultured with increasing concentrations of metallic (Co-35Ni-20Cr-10Mo and Co-28Cr-6Mo) and polyethylene (UHMWPE-GUR1020) particles simulating periprosthetic wear debris. Real-time Polymerase Chain Reaction (RT-PCR) and Western Blotting were used to quantify gene and protein expression of CXCR4. The expression of TNF-a and the effects of AMD3100 on both CXCR4 and TNF-a expression among these cells was also investigated. Immunohistochemical techniques were used to investigate the in-vivo expression of CXCR4 in retrieval tissues obtained from 2 cohorts of failed metal-on-metal and ceramic-on-polyethylene THA's. Results. In-vitro RT-PCR and experiments demonstrated a dose-dependent increase in CXCR4 mRNA (7.5 fold for MG63 and 4.0 fold for SaOs-2 cells) among cells co-cultured with metal alloy particles. Western blotting also showed a time-dependent increase in protein expression of CXCR4. No regulatory effects on CXCR4 gene expression were seen among cells co-cultured with UHMWPE particles. The attempted blockade of CXCR4 by it's known competitive receptor agonist AMD3100 (bicyclam) led to a significant inhibition of metal particle induced TNF-a mRNA expression. In-vivo immunohistochemical data from the 2 cohorts of patients with failed THA's showed CXCR4 positivity among 83% of patients with metal-on-metal hip replacements but none among ceramic-on-polyethylene hip replacements. Discussion/Conclusion. CXCR4, the chemokine receptor for the chemokine SDF-1 (stromal cell derived factor-1), has been shown to play a pivotal role in bone metastasis, inflammatory and autoimmune conditions but has not been investigated in the context of periprosthetic osteolysis in failed joint replacements. Our in-vivo and in-vitro findings collectively suggest that the CXCR4 chemokine is specifically upregulated in a dose and time-dependent manner in the presence of metallic (cobalt-chrome) wear debris but not by polyethylene wear debris. The CXCR4 chemokine receptor may be a selective and specific biomarker for progressive osteolysis seen in failed MoM hip replacements and this phenomenon could potentially have a translational effect on the practice of orthopaedic surgery. Further research is needed to evaluate the interactions of CXCR4 with osteoclast activation and signalling pathways


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 42 - 42
1 Jul 2014
Goodman S Yao Z Ren P Gibon E Rao A Pajarinen J Antonios J Lin T Smith R Egashira K Keeney M Yang F Konttinen Y
Full Access

Summary. Wear particles from joint replacements may result in loosening and periprosthetic osteolysis. Interference with systemic macrophage trafficking to the implant, modulation of macrophage phenotype from M1 to M2, and inhibition of NFκB may mitigate these adverse effects. Introduction. Joint replacement of the lower extremity is highly successful in alleviating pain, and improving ambulation and function. However, prosthetic byproducts of different materials, in sufficient amounts, may lead to loosening and periprosthetic osteolysis. Debris from polymers (such as polyethylene and PMMA), metals and ceramics are capable of inciting an adverse tissue reaction, which is orchestrated by cells of the monocyte/macrophage lineage. Three experimental approaches have been taken by our group to potentially mitigate the adverse biological sequela of particle disease. These include: 1) interfering with ongoing migration of monocyte/macrophages to the implant site by inhibiting the chemokine system 2) altering the functional activities of local macrophages by converting pro-inflammatory M1 macrophages to an anti-inflammatory pro-tissue healing M2 phenotype and 3) modulating the production and release of pro-inflammatory cytokines, chemokines and other potentially harmful factors by inhibiting the key transcription factor NFκB. Methods. First, a murine model of systemic trafficking of remotely infused macrophages to locally infused clinically relevant wear particles was established. After preliminary in vitro studies in which a key macrophage chemokine, MCP-1 was identified, blocking of this chemokine ligand-receptor axis using antagonists and knockouts was undertaken. Second, in vitro and in vivo studies were performed to convert M1 pro-inflammatory macrophages (associated with wear particles ± endotoxin) to an M2 alternative phenotype by the infusion of the anti-inflammatory cytokine Interleukin-4 (IL-4). Third, in vitro studies were undertaken in which activated macrophages were exposed to an NFκB decoy oligodeoxynucleotide (ODN), which interferes with the production of pro-inflammatory mediators. The analytical techniques used included bioluminescence, microCT, immunohistochemical and immunofluorescent microscopy, histomorphometry, ELISA, rT-PCR and cell sorting. Results. Interference of the MCP-1-CCR2 ligand-receptor axis decreased systemic macrophage migration to the area of particle infusion, and subsequent osteolysis at the implant site. Local delivery of IL-4 promoted an alternative anti-inflammatory M2 macrophage phenotype (rather than a pro-inflammatory M1 phenotype), mitigating inflammation and osteolysis. Preliminary studies exposing activated macrophages to NFκB ODN decreased pro-inflammatory cytokine production. Discussion/Conclusion. Macrophage-induced inflammation and osteolysis due to wear byproducts limit the longevity of joint replacements. The interventions outlined above may be useful in preventing these events. For example, coatings that limit macrophage migration to the implant site or local delivery of biologics that alter macrophage phenotype might facilitate osseointegration and provide a more robust bone-implant interface initially. Early osteolysis with a salvageable joint replacement might be mitigated by local infusion of IL-4 or an NFκB ODN. These treatments are less invasive compared to surgical revision, and might prolong the lifetime of a joint replacement in humans


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 1 - 1
1 Mar 2021
Farii HA
Full Access

Abstract. Purpose. It is becoming apparent that mesenchymal stem cells (MSCs) do not directly contribute to mesenchymal tissue regeneration. Pre-clinical attempts to repair large bone defects in big animal models have been hampered by poor MSCs survival after implantation which impedes their direct or indirect effects. Based on previous work, we hypothesized that a venous axial vascularization of the scaffold supporting MSCs or their combination with fresh bone marrow (BM) aspirate would improve their in vivo survival. Methods. Cross-shape profile tubular microporous monetite implants (12mm long, 5mm large) as two longitudinal halves were produced by 3D powder printing. They were implanted around the femoral veins of Wistar rats and loaded with 1mL of BM aspirate either alone or supplemented by 10. 7. MSCs. This was compared with BM-free scaffolds loaded only with 10. 7. MSCs. After 8 weeks bone formation were investigated by micro-CT, scanning electron microscopy, histology and immunohistochemistry. Results. Little bone formation was observed within the scaffold when it was only loaded with MSCs surprisingly. Coupling MSCs, autologous BM and venous perfusion of the scaffold led to a higher volume of new bone than BM alone suggesting that MSCs augmented the bone formation capacity of BM aspirate or enhanced its survival post implantation. Conclusion. Subcutaneous bone formation within 3D-printed implant that mixed of BM with or without MSCs was successfully achieved for the first time by venous perfusion. The inability of MSCs to form differentiated tissues by their own was confirmed in this study; however, contact between MSCs and BM cells and MSCs paracrine secretome (e.g., cytokines, chemokines, extracellular vesicles) may have induced immunomodulatory effects (e.g., macrophages polarization, Treg cells) that triggered bone formation. This approach, if translatable to large animal models, offers immediate clinical value as well as an insight into the role of immune system in tissue regeneration. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported: I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 209 - 209
1 Jul 2014
Ishikawa M Ito H Yoshitomi H Murata K Shibuya H Furu M Kitaori T Nakamura T Matsuda S
Full Access

Summary Statement. MCP-1/ CCR2 axis at the early phase plays a pivotal role in the fracture healing. Inflammation plays a pivotal role in fracture healing. Among them, chemokines play key roles in inflammation. Monocyte chemotactic protein-1 (MCP-1), via its receptor C-C chemokine receptor 2 (CCR2), acts as a potent chemoattractant for various cells to promote migration from circulation to inflammation site. Thus, the importance of MCP-1/CCR2 axis in fracture healing has been suggested. However, the involvement of MCP-1/CCR2 axis tofracture site is not fully elucidated. Results. PCR Array: The expression of MCP-1 and MCP-3 had increased on day 2 than 0 or 7 in the rib fracture healing. Immunohistochemistry Staining: To verify the localization of MCP-1 expression, we examined the Wild type (WT)-mouse rib fracture healing. We observed high expression of MCP-1 and MCP-3 at the periosteum and the endosteum on post-fracture day 3. In vivo Antagonist Study: To elucidate whether MCP-1/CCR2 axis is involved during the early phase of fracture healing, we continuously administered RS102895, CCR2 antagonist, before or after rib fracture. Micro-CT analysis showed delayed fracture healing in the before-group compared with both the control and after-group. On day 21, the hard callus volume in the before-group was significantly smaller than that in the control-group. Histological analysis showed that fractures in both the control and the after-groups were healed by day 21. In contrast, less of cartilage in the callus was observed in the before-group on day 7. Gain of Function: To examine the roles of MCP-1 at the periosteum and the endosteum during the fracture healing, we created a segmental bone graft exchanging model. The bone grafts were transplanted from MCP-1. −/−. mice to another MCP-1. −/−. mice (KO-to-KO). Micro-CT analysis showed that KO-to-KO transplantation led to the delay of fracture healing on day 21. Next, we created exchanging-bone graft models between MCP-1. −/−. and WT mice, in which a segmental bone derived from a WT mouse was transplanted into a host MCP-1. −/−. mouse (WT-to-KO). In contrast to KO-to-KO bone graft transplantation, the transplantation of WT-derived graft into host KO mouse resulted in a significant increase of new bone formation on day 21. Histological analysis revealed that marked and localised induction of MCP-1 expression in the periosteum and the endosteum around the WT-derived graft was observed in the host MCP-1. −/−. mouse. Loss of Function: To validate whether MCP-1 is a crucial chemokine for fracture healing, we created WT-to-WT and KO-to-WT bone graft models. When WT-donor graft was transplanted into WT-host, abundant new bone formation was observed around a WT-derived graft on day 21. In contrast, transplantation of KO-derived graft into WT-host resulted in a marked reduction of periosteal bone formation on a donor graft. Discussion. In this study, we demonstrated that MCP-1/ CCR2 axis at the early phase modulates the fracture healing. Furthermore, we showed that MCP-1 in the periosteum and the endosteum promotes the fracture healing in vivo. Thus, these results clearly suggest that MCP-1 in the periosteum and the endosteum at the early inflammatory phase is an essential component for successful fracture healing