Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 26 - 26
1 Dec 2021
Lang S Loibl M Gläsner J Simon M Rupp M Grad S Neumann C Alt V Gessner A Hanses F
Full Access

Aim. Vertebral osteomyelitis (VO) is an infection of the spine mostly caused by bacterial pathogens. The pathogenesis leading to destruction of intervertebral discs (IVD) and adjacent vertebral bodies (VB) is poorly described. We aimed to investigate the connection between infection, bone- and disc-metabolism in VO patients. Method. Fourteen patients with VO (infection group) and 14 patients with incomplete burst fractures of the spine (fracture group as controls) were included prospectively. Demographic data, treatment details, laboratory infection markers, and patient-reported outcome were assessed. Tissue biopsies from affected IVDs and adjacent VBs were analyzed for mRNA-expression levels of 18 target genes including chemokines, adipokines and genes involved in bone-metabolism by RT-qPCR. Results. The Receptor activator of NF-κB/Osteoprotegerin (RANK/OPG) expression ratio was elevated in VB and IVD of the infection group (p<0.001 and p=0.028, respectively). The RANK-ligand (RANKL)/OPG expression ratio was elevated in VB of the infection group (p<0.01). Expressions of the chemokines IL8 and CCL20 were higher in VB samples of the infection group. The expression of leptin was higher in IVD tissue, the mRNA expression of omentin and resistin was lower in VBs of the infection group. OPG mRNA expression was lower in infected VB and in IVD tissue compared to the fracture group. Conclusions. We identified similar expression patterns of pro-inflammatory cytokines and the RANK/RANKL/OPG axis in VBs and IVDs of patients with VO. This finding suggests that common immuno-metabolic pathways are involved in mechanisms leading to tissue degradation in VBs and IVDs during VO


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 75 - 75
1 Jul 2020
Algate K Cantley M Fitzsimmons T Paton S Wagner F Zannettino A Holson E Fairlie D Haynes D
Full Access

The inflammatory cascade associated with prosthetic implant wear debris, in addition to diseases such as rheumatoid arthritis and periodontitis, it is shown to drastically influence bone turnover in the local environment. Ultimately, this leads to enhanced osteoclastic resorption and the suppression of bone formation by osteoblasts causing implant failure, joint failure, and tooth loosening in the respective conditions if untreated. Regulation of this pathogenic bone metabolism can enhance bone integrity and the treatment bone loss. The current study used novel compounds that target a group of enzymes involved with the epigenetic regulation of gene expression and protein function, histone deacetylases (HDAC), to reduce the catabolism and improve the anabolism of bone material in vitro. Human osteoclasts were differentiated from peripheral blood monocytes and cultured over a 17 day period. In separate experiments, human osteoblasts were differentiated from human mesenchymal stem cells isolated from bone chips collected during bone marrow donations, and cultured over 21 days. In these assays, cells were exposed to the key inflammatory cytokine involved with the cascade of the abovementioned conditions, tumour necrosis factor-α (TNFα), to represent an inflammatory environment in vitro. Cells were then treated with HDAC inhibitors (HDACi) that target the individual isoforms previously shown to be altered in pathological bone loss conditions, HDAC-1, −2, −5 and −7. Analysis of bone turnover through dentine resorptive measurements and bone mineral deposition analyses were used to quantify the activity of bone cells. Immunohistochemistry of tartrate resistant acid phosphatase (TRAP), WST-assay and automated cell counting was used to assess cell formation, viability and proliferation rates. Real-time quantitative PCR was conducted to identify alterations in the expression of anti- and pro-inflammatory chemokines and cytokines, osteoclastic and osteoblastic factors, in addition to multiplex assays for the quantification of cytokine/chemokine release in cell supernatant in response to HDACi treatments in the presence or absence of TNFα. TNFα stimulated robust production of pro-inflammatory cytokines and chemokines by PBMCs (IL-1β, TNFα, MCP1 and MIP-1α) both at the mRNA and protein level (p < 0 .05). HDACi that target the isoforms HDAC-1 and −2 in combination significantly suppressed the expression or production of these inflammatory factors with greater efficacy than targeting these HDAC isoforms individually. Suppression of HDAC-5 and −7 had no effect on the inflammatory cascade induced by TNFα in monocytes. During osteoclastic differentiation, TNFα stimulated the size and number of active cells, increasing the bone destruction observed on dentine slices (p < 0 .05). Targeting HDAC-1 and −2 significantly reduced bone resorption through modulation of the expression of RANKL signalling factors (NFATc1, TRAF6, CatK, TRAP, and CTR) and fusion factors (DC-STAMP and β3-integerin). Conversely, the anabolic activity of osteoblasts was preserved with HDACi targeting HDAC-5 and −7, significantly increasing their mineralising capacity in the presence of TNFαthrough enhanced RUNX2, OCN and Coll-1a expression. These results identify the therapeutic potential of HDACi through epigenetic regulation of cell activity, critical to the processes of inflammatory bone destruction


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 68 - 68
23 Feb 2023
Lynskey S Ziemann M Jamnick N Gill S McGee S Sominsky L Page R
Full Access

Osteoarthritis (OA) is a disease of the synovial joint with synovial inflammation, capsular contracture, articular cartilage degradation, subchondral sclerosis and osteophyte formation contributing to pain and disability. Transcriptomic datasets have identified genetic loci in hip and knee OA demonstrating joint specificity. A limited number of studies have directly investigated transcriptional changes in shoulder OA. Further, gene expression patterns of periarticular tissues in OA have not been thoroughly investigated. This prospective case control series details transcriptomic expression of shoulder OA by analysing periarticular tissues in patients undergoing shoulder replacement for OA as correlated with a validated patient reported outcome measure of shoulder function, an increasing (clinically worsening) QuickDASH score. We then compared transcriptomic expression profiles in capsular tissue biopsies from the OA group (N=6) as compared to patients undergoing shoulder stabilisation for recurrent instability (the control group, N=26). Results indicated that top ranked genes associated with increasing QuickDASH score across all tissues involved inflammation and response to stress, namely interleukins, chemokines, complement components, nuclear response factors and immediate early response genes. Some of these genes were upregulated, and some downregulated, suggestive of a state of flux between inflammatory and anti-inflammatory signalling pathways. We have also described gene expression pathways in shoulder OA not previously identified in hip and knee OA, as well as novel genes involved in shoulder OA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 25 - 25
24 Nov 2023
Parente R Possetti V Granata V Schiavone ML Strina D Davi F Menale C Palagano E Filipović M Grčević D Bottazzi B Mantovani A Sobacchi C Inforzato A
Full Access

Aim. Osteomyelitis (OM) is a debilitating infection of the bone that originates from hematogenous spreading of microbes or contamination after surgery/fracture. OM is mainly caused by the opportunistic bacterium Staphylococcus aureus (SA), which can evade the host immune response, acquire antibiotic resistance and chronically colonize the musculoskeletal tissue . 1,2. , yet the underlying molecular and cellular processes are largely unclear. This study aimed to characterize the pathogenetic mechanisms of SA-OM with a focus on the long pentraxin 3 (PTX3), a soluble pattern recognition molecule and bone tissue component that is emerging as a new player in osteoimmunology . 3. and a diagnostic marker of periprosthetic joint infections, a common form of OM. 4. . Method. A murine model of OM based on intra-bone injection of SA was developed that closely mimicked surgery/trauma-related OM in humans and allowed addressing the role of PTX3 in gene-modified (Ptx3-/-) animals. Local and systemic infection and inflammation were assessed via microbiology, flow cytometry, histochemistry and microCT techniques. Results. SA-injected mice developed chronic infection with measurable levels of viable bone-resident bacteria up until 30 days from microbial challenge. The infection was confined to the treated limbs only and accompanied by extensive tissue remodelling. The bacterial load was higher in WT than Ptx3. -/-. animals at 6 and 14 days from SA injection. Accordingly, WT mice had enhanced systemic inflammation with expanded innate immune compartment in the spleen and increased serum levels of inflammatory cytokines and chemokines. PTX3 levels were higher in SA- than vehicle (PBS)-injected WT animals both in the serum and bone tissue. Furthermore, administration of a PTX3-targeting antibody reduced the bacterial burden in the bones of SA-injected WT mice. Conclusions. In a mouse model of SA-OM, genetic deficiency of PTX3 protected from infection and inflammation, pointing to this pentraxin as a crucial player in OM pathogenesis and a novel therapeutic target in bone infections. The study was approved by the Italian Ministry of Health (approval n. 520/2019-PR issued on 19/07/2019) and supported by Fondazione Beppe and Nuccy Angiolini


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 76 - 76
1 Dec 2022
Eltit F Ng T Gokaslan Z Fisher C Dea N Charest-Morin R
Full Access

Giant cell tumors of bone (GCTs) are locally aggressive tumors with recurrence potential that represent up to 10% of primary tumors of the bone. GCTs pathogenesis is driven by neoplastic mononuclear stromal cells that overexpress receptor activator of nuclear factor kappa-B/ligand (RANKL). Treatment with specific anti-RANKL antibody (denosumab) was recently introduced, used either as a neo-adjuvant in resectable tumors or as a stand-alone treatment in unresectable tumors. While denosumab has been increasingly used, a percentage of patients do not improve after treatment. Here, we aim to determine molecular and histological patterns that would help predicting GCTs response to denosumab to improve personalized treatment. Nine pre-treatment biopsies of patients with spinal GCT were collected at 2 centres. In 4 patients denosumab was used as a neo-adjuvant, 3 as a stand-alone and 2 received denosumab as adjuvant treatment. Clinical data was extracted retrospectively. Total mRNA was extracted by using a formalin-fixed paraffin-embedded extraction kit and we determined the transcript profile of 730 immune-oncology related genes by using the Pan Cancer Immune Profiling panel (Nanostring). The gene expression was compared between patients with good and poor response to Denosumab treatment by using the nSolver Analysis Software (Nanostring). Immunohistochemistry was performed in the tissue slides to characterize cell populations and immune response in CGTs. Two out of 9 patients showed poor clinical response with tumor progression and metastasis. Our analysis using unsupervised hierarchical clustering determined differences in gene expression between poor responders and good responders before denosumab treatment. Poor responding lesions are characterized by increased expression of inflammatory cytokines as IL8, IL1, interferon a and g, among a myriad of cytokines and chemokines (CCL25, IL5, IL26, IL25, IL13, CCL20, IL24, IL22, etc.), while good responders are characterized by elevated expression of platelets (CD31 and PECAM), coagulation (CD74, F13A1), and complement classic pathway (C1QB, C1R, C1QBP, C1S, C2) markers, together with extracellular matrix proteins (COL3A1, FN1,. Interestingly the T-cell response is also different between groups. Poor responding lesions have increased Th1 and Th2 component, but good responders have an increased Th17 component. Interestingly, the checkpoint inhibitor of the immune response PD1 (PDCD1) is increased ~10 fold in poor responders. This preliminary study using a novel experimental approach revealed differences in the immune response in GCTs associated with clinical response to denosumab. The increased activity of checkpoint inhibitor PD1 in poor responders to denosumab treatment may have implications for therapy, raising the potential to investigate immunotherapy as is currently used in other neoplasms. Further validation using a larger independent cohort will be required but these results could potentially identify the patients who would most benefit from denosumab therapy


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 48 - 48
1 Feb 2012
Pearson R Scammell B
Full Access

Background. Osteoarthritis (OA) has been described as a non-inflammatory arthritis and yet the choice of drug treatment is NSAIDs. Aim. To test the hypothesis that cytokines and chemokines are associated with inflammation in OA. Methods. Synovium biopsy and synovial fluid of 17 patients undergoing total knee arthroplasty (TKR) were sampled at the onset of their surgery. Histology of synovium and immunoassay of synovial fluid were conducted. A 3 point scale, 3 being the most cellular, was used to assess the cellularity of synovium histology slides, a parameter known to correlate with several markers of OA. Synovial fluid was analysed using a multi-anylate fluorescent immunoassay. In brief, cytokines and chemokines associated with inflammation were quantified, namely IL-12, TNF, IL-10, IL-6, IL-1, IL-8. Results. The 3 point scale used to describe the cellularity of the synovium placed the majority in groups 2 and 3. Low levels (<120 pg/ml) of IL-12, IL-10, IL-1 and TNF were measured in all 3 cellularity groups. Markedly elevated values of IL-6 and IL-8 were measured in the synovial fluid of knees with the most cellular synovium (maximum values were 8325 pg/ml and 1540 pg/ml respectively). Conclusion. Elevated levels of IL-6 are associated with bone resorption, being clinically linked with aseptic loosening. IL-8 is capable of promoting angiogenesis and can act as a chemokine which attracts T cells. T cells were identified in the synovium of OA patients indicating an inflammatory component to the heterogeneous disease of OA


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 4 - 4
1 Mar 2021
Werdyani S Liu M Xie Z Furey A Gao Z Rahman P Zhai G
Full Access

Total joint replacement (TJR) is by far the most effective therapy for end-stage OA patients. Most of patients achieve joint pain reduction and function improvement following to TJR, however up to 22% of them either do not improve or deteriorate after surgery. The aim of this study was to identify genetic variants to be associated with poor outcome of TJR in primary OA patients by a genome-wide association approach (GWAS). Study participants were primary OA patients from the Newfoundland Osteoarthritis Study (NFOAS) that comprised total knee or hip replacement and recruited before 2016 in St. John's, NL. DNA samples were extracted from patients' blood. Study participants completed their pre-operation and 3.99±1.38 years post-surgery outcome assessment using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). DNA samples were genotyped using the genome-wide Illumina HumanOmni2.58 genotyping microarray containing 2.4 million SNPs. Pre-association quality control filtering was conducted for the raw genotyping data using PLINK 1.7 program, and genotype imputation was performed using the IMPUTE2 algorithm with multiple population reference data from 1000 Genome Project. The imputed data with ∼3.1 million variants was used to test the association with non-responders to TJR using the additive genetic model. Eighty three primary OA patients (44 responders and 39 non-responders) were included in the analysis. Association analysis detected three chromosomal regions on chr5, 7, and 8 to be significantly associated with non-responding to pain. The top SNPs at these loci are intergenic variants that include SNP (rs17118094, p=4.4×10-5) on chr5. This SNP is adjacent to SGCD gene that plays an important role in muscular strength and maintenance. Another associated SNP (rs71572810, p=4.7×10-5) is nearby IMMP2L gene on chr7. This gene is reported to be associated with behavioral abnormalities. Finally, SNP (rs6992938, p=5.8×10-5) on chr8 is located downstream of TRPA1 gene that is known to have a central role in the pain response to endogenous inflammatory mediators. Three loci were also found to be significantly associated with non-responding to function. The lead variant in the locus on chr1 is an intergenic SNP (rs9729377, p=1.7×10-5) falling between CTBS and MCOLN2 genes. CTBS gene is associated with TNF-α, a cytokine that stimulate the inflammation acute phase reaction, and MCOLN2 gene plays a role in the chemokine secretion and macrophage migration in the innate immune response. Other top SNPs in loci on chr2 and 10 harbor CCDC93, INSIG2, and KLF6 genes that are associated with heel bone mineral density, hypercholesterolemia, obesity and BMI. To our knowledge, this project is the first study that investigated the association between genetic factors and TJR non-responders. Our results demonstrated that genes related to muscle strength, behavioral trait, pain response, and inflammation play a significant role in poor outcome of TJR, warranting further investigation


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_15 | Pages 20 - 20
1 Dec 2015
Galliera E Drago L Romano C Marazzi M Vassena C Romanelli MC
Full Access

Post operative prosthetic joint infection (PJI) is the most common cause of failure of total joint arthroplasty, requiring revision surgery, but a gold standard for the diagnosis and the treatment of PIJ is still lacking [1]. SuPAR, the soluble urokinase plasminogen activation receptor, has been recently described as a powerful diagnostic and prognostic tool, able not only to detect sepsis but also to discriminate different grade of sepsis severity [2,3]. This study aimed to examine the diagnostic value of SuPAR in post operative PJI, in order to explore the possible application of this new biomarker in the early diagnosis of PJI. The level of SuPAR have been measured in PJI patients and controls (patients undergoing prosthesis revision without infection), and correlated with pro and anti inflammatory markers (CRP C-reactive protein, IL-6, IL-1 TNFα, IL-10, IL-12, IL-8, IL1ra and the chemokine CCL2). Statistical analysis of Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) was performed. As described in Figure 1, serum SuPAR displayed a strongly significative increase in PJI patients compared to not infected controls, and a significative positive correlation with C-reactive protein, IL-6, IL-1 and TNFα and the chemokine CCL2. SuPAR displayed a very good AUC, significantly higher than CRP and IL-6 AUC. This study clearly show that the measure of Serum level of SuPAR provide a extremely important benefit because it is a precise indicator of bacterial infection, and the addition of SuPAR serum level measurement to classical inflammatory markers can strongly improve the diagnosis of prosthesis joint infection. The authors acknowledge ViroGates, Denmark for providing suPARNOSTIC Standard Kit. The authors would also acknowledge the Italian Ministero dell’ Istruzione, Università e Ricerca (MIUR) and Italian Ministero della Salute for providing funds for this research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 53 - 53
1 Aug 2020
Cherif H Bisson D Kocabas S Haglund L
Full Access

Intervertebral discs (IVDs) degeneration is one of the major causes of back pain. Upon degeneration, the IVDs tissue become inflamed, and this inflammatory microenvironment may cause discogenic pain. Cellular senescence is a state of stable cell cycle arrest in response to a variety of cellular stresses including oxidative stress and adverse load. The accumulation of senescent IVDs cells in the tissue suggest a crucial role in the initiation and development of painful IVD degeneration. Senescent cells secrete an array of cytokines, chemokines, growth factors, and proteases known as the senescence-associated secretory phenotype (SASP). The SASP promote matrix catabolism and inflammation in IVDs thereby accelerating the process of degeneration. In this study, we quantified the level of senescence in degenerate and non-degenerate IVDs and we evaluated the potential of two natural compounds to remove senescent cells and promote overall matrix production of the remaining cells. Human IVDs were obtained from organ donors. Pellet or monolayer cultures were prepared from freshly isolated cells and cultured in the presence or absence of two natural compounds: Curcumin and its metabolite vanillin. Monolayer cultures were analyzed after four days and pellets after 21 days for the effect of senolysis. A cytotoxicity study was performed using Alamar blue assay. Following treatment, RNA was extracted, and gene expression of senescence and inflammatory markers was evaluated by real-time q-PCR using the comparative ΔΔCt method. Also, protein expression of p16, Ki-67 and Caspase-3 were evaluated in fixed pellets or monolayer cultures and total number of cells was counted on consecutive sections using DAPI and Hematoxylin. Proteoglycan content was evaluated using SafraninO staining or DMMB assay to measure sulfated glycosaminoglycan (sGAG) and antibodies were used to stain for collagen type II expression. We observed 40% higher level of senescent cells in degenerate compare to the non-degenerate discs form unrelated individuals and a 10% increase when we compare degenerate compare to the non-degenerate discs of the same individual. Using the optimal effective and safe doses, curcumin and vanillin cleared 15% of the senescent cells in monolayer and up to 80% in pellet cultures. Also, they increased the number of proliferating and apoptotic cells in both monolayer and pellets cultures. The increase in apoptotic cell number and caspase-3/7 activity was specific to degenerate cells. Following treatment, mRNA expression levels of SASP factors were decreased by four to 32-fold compared to the untreated groups. Senescent cell clearance decreased, protein expression of MMP-3 and −13 by 15 and 50% and proinflammatory cytokines levels of IL-1, IL-6 and IL-8 by 42, 63 and 58 %. Overall matrix content was increased following treatment as validated by an increase in proteoglycan content in pellet cultures and surrounding culture media. This work identifies novel senolytic drugs for the treatment of IVD degeneration. Senolytic drugs could provide therapeutic interventions that ultimately, decrease pain and provide a better quality of life of patients living with IVDs degeneration and low back pain


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 44 - 44
1 Mar 2012
Molloy A Dwyer R Kerin M
Full Access

Over 80% of patients with advanced breast cancer will develop bone metastases for which there is no cure. Although thought to involve a complex cascade of cell-cell interactions, the factors controlling the development of bone metastases are still poorly understood. Osteoblasts may have an important role in mediating homing and proliferation of breast cancer cells to the bony environment. This study aimed to examine the potential role osteoblasts have in the migration of circulating tumour cells to bone and the factors involved in this attraction. Culture of osteoblasts and MDA-MB-231 breast cancer cells was performed. Breast cancer cell migration in response to osteoblasts was measured using Transwell Migration Inserts. Potential mediators of cell migration were detected using ChemiArray & ELISA assays. A luminometer based Vialight assay was used to measure breast cancer cell proliferation in response to factors secreted by osteoblasts. There was a 3-4 fold increase of MDA-MB-231 migration in response to osteoblasts. ChemiArray analysis of osteoblast-conditioned medium revealed a range of secreted chemokines including IL-6 & 8, TIMP 1 & 2 and MCP-1. Initially, MCP-1 was quantified at 282 pg/ml, but rose to over 9000 pg/ml when osteoprogenitor cells were differentiated into mature osteoblasts. Inclusion of a monoclonal antibody to MCP-1 in osteoblast-conditioned medium resulted in a significant decrease in breast cancer cell migration to osteoblasts. There was no significant change in proliferation of MDA-MB 231 cells when exposed to osteoblast-conditioned medium. Osteoblasts are capable of inducing breast cancer cell migration mediated at least in part by chemokine secretion. MCP-1 produced by the osteoblasts was shown to play a central role in mediating homing of the breast cancer cells. Increased understanding of the pathways involved in the development of bone metastases may provide new targets for therapeutic intervention


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 86 - 86
1 Apr 2018
Xu J Zeng L Knight M Shelton J
Full Access

Introduction. Wear debris and metal ions originating from metal on metal hip replacements have been widely shown to recruit and activate macrophages. These cells secrete chemokines and pro-inflammatory cytokines that lead to an adverse local tissue reaction (ALTR), frequently requiring early revision. The mechanism for this response is still poorly understood. It is well documented that cobalt gives rise to apoptosis, necrosis and reactive oxygen species generation. Additionally, cobalt stimulates T cell migration, although the effect on macrophage motility remains unknown. This study tests the hypothesis that cobalt ions and nanoparticles affect macrophage migration stimulating an ALTR. Methods. This study used Co. 2+. ions (200µM) and cobalt nanoparticles (CoNPs, 100µM, 2–60nm diameter). PMA differentiation of the U937 cell line was used as macrophage-like cells. The effect of cobalt on macrophage migration was investigated by live cell imaging. After 12 hours of each treatment, timelapse images of 20 cells were collected over a 6 hour period with images captured every 5 min. Migration of individual cells was tracked in 2D using ImageJ software. The transwell migration assay was also applied to study the effect of cobalt on macrophage directional migration. U937 cells in serum free medium were added to the upper chamber of a 8µm pore size Transwell insert in the presence of cobalt, whilst the lower chamber was filled with medium plus 10% FBS. After 6 hours treatment, cells remaining on the membrane were fixed, stained with crystal violet and counted. Cellular F-actin and podosomes were visualized by labeling with TRITCconjugated phalloidin and anti-vinculin antibody after 12 hours of cobalt exposure (Co. 2+. and CoNPs). Results. Cells incubated with cobalt ions and nanoparticles showed a substantial reduction in cell migration compared with control cells. The total migration path length of cells treated with Co. 2+. (362.4±96.6µm) and CoNPs (217.3±128.1µm) were significantly shorter than those for untreated cells (801.1±198.3µm). The ability of macrophages to migrate through the transwell membrane was significantly impaired by pre-treatment with cobalt, with 16±4 and 18± migrated cells/field for Co. 2+. and CoNPs respectively with the control at 42±7 migrated cells/field. In addition, cobalt influenced macrophage morphology and actin cytoskeletal organization with a dramatic increase in the presence of intracellular podosome-type adhesions structure. Discussion. Co. 2+. ions and nanoparticles dramatically inhibited the migration of U937 macrophages in contrast to the enhanced migration reported for T cells. We propose that macrophages recruited into the area of CoCr implants would lose their responsiveness to migration signals and be retained in situ due to cobalt-induced cytoskeleton rearrangement. This enhanced macrophage accumulation and cobalt-induced formation of podosomes may therefore represent a mechanism through which cobalt wear debris and metal ions from joint prostheses exacerbate the ALTR leading to revision surgery


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 46 - 46
1 Nov 2016
Gandhi R Sharma A Gilbert P Bakooshli M Gomez A Kapoor M Viswanathan S
Full Access

Osteoarthritis (OA) is the most common form of arthritis worldwide. It is a major cause of disability in the adult population with its prevalence expected to increase dramatically over the next 20 years. Although current therapies can alleviate symptoms and improve function in early course of the disease, OA inevitably progresses to end-stage disease requiring total joint arthroplasty. Mesenchymal stromal cells (MSCs) have emerged as a candidate cell type with great potential for intra-articular (IA) repair therapy. However, there is still a considerable lack of knowledge concerning their behaviour, biology and therapeutic effects. To start addressing this, we explored the secretory profile of bone marrow derived MSCs in early and end-stage knee OA synovial fluid (SF). Subjects were recruited and categorised into early [Kellgren-Lawrence (KL) grade I and II, n=12] and end-stage (KL grade III and IV, n=11) knee OA groups. The SF proteome of early and end-stage OA was tested before and three days after the addition of bone marrow MSCs (16.5×10^3, single donor) using multiplex ELISA (64 cytokines) and mass spectrometry (302 proteins detected). Non parametric Wilcoxon-signed rank test for paired samples was used to compare the levels of proteins before and after addition of MSCs in early and end-stage knee OA SF. Significant differences were determined after multiple comparisons correction (FDR) with a p<0.05. Gender distribution and BMI were not statistically different between the two cohorts (p>0.05). However, patients in early knee OA cohort were significantly younger (44.7 years, SD=7.1) than patients in the end-stage cohort (58.6 years, SD=4.4; p<0.05). In both early and end-stage knee OA, MSCs increased the levels of VEGF-A (by 320.24 pg/mL), IL-6 (by 826.78 pg/mL) and IL-8 (by 128.85 pg/mL), factors involved in angiogenesis; CXCL1/2/3 (by 103.35 pg/mL), CCL2 (by 1187.27 pg/mL), CCL3 (by 15.82 pg/mL) and CCL7 (by 10.43 pg/mL), growth factors and chemokines. However, CXCL5 (by 48.61 pg/mL) levels increased only in early knee OA, whereas PDGF-AA (by 15.36 pg/mL) and CXCL12 (by 497.19 pg/mL) levels increased only in end-stage knee OA. This study demonstrates that bone marrow derived MSCs secrete angiogenic and chemotactic factors both in early and end-stage knee OA. More importantly, MSCs show a differential reaction between early and end-stage OA. Functional assays are required to further understand on how the therapeutic effect of MSCs is modulated when exposed to OA SF


Background. 70% of breast cancer patients develop metastatic bone deposits, predominantly spinal metasases. Adult Mesenchymal Stem Cells (MSCs) are multiprogenitor stem cells found within the bone marow which have the ability to self-renew and differentiate into multiple cell types. MSCs home specifically to tumour sites, highlighting their potential as delivery vehicles for therapeutic agents. However studies show they may also increase tumour metastatic potential. Aim. To investigate interactions between MSCs and breast cancer cells to further elucidate their role in the tumour microenvironment and hence understand factors involved in stimulating the formation of bone metastases. Methods. MSCs harvested from the iliac crest of healthy volunteers were grown for collection of conditioned medium (CM), containing all factors secreted by the cells. Breast cancer cell lines (T47D, SK-BR-3, MDA-MB-231) were then cultured in MSC CM +/− antibodies to TGFβ, VEGF, MCP-1 and CCL5 for 72hrs. Cell proliferation was assessed using an Apoglow. (r). assay and RNA harvested for analysis of changes in Epithelial Mesenchymal Transition specific gene expression : N-Cadherin, E-Cadherin, Vimentin, Twist, Snail. Results. A significant down regulation of breast cancer cell proliferation in the presence of MSC secreted factors was observed (p< 0.05). There was a dramatic increase in expression of EMT specific genes in both cell lines following exposure to MSC-secreted factors. Inclusion of antibodies to TGF, VEGF, MCP-1 and CCL5 inhibited the effect seen, suggesting these paracrine factors played a role in the elevated expression levels. Conclusion. MSCs clearly have a distinct paracrine effect on breast cancer epithelial cells, mediated at least in part through secretion of growth factors and chemokines. These factors play an important role in the metastatic cascade and may represent potential therapeutic targets to inhibit MSC-breast cancer interactions, helping to prevent the formation of bone metastases in cancer


Background. 70% of Breast Cancer patients develop metastatic bone deposits, predominantly spinal metasases. Adult Mesenchymal Stem Cells (MSCs) are multiprogenitor stem cells found within the bone marow which have the ability to self renew and differentiate into multiple cell types. MSCs home specifically to tumour sites, highlighting their potential as delivery vehicles for therapeutic agents. However studies show they may also increase tumour metastatic potential. Aims. The aim of this study was to investigate interactions between MSCs and breast cancer cells to further elucidate their role in the tumour microenvironment and hence understand factors involved in stimulating the formation of bone metastases. Methods. MSCs harvested from the iliac crest of healthy volunteers were grown for collection of conditioned medium (CM), containing all factors secreted by the cells. Breast cancer cell lines (T47D, SK-BR-3, MDA-MB-231) were then cultured in MSC CM +/− antibodies to TGFβ, VEGF, MCP-1 and CCL5 for 72hrs. Cell proliferation was assessed using an Apoglow(r) assay and RNA harvested for analysis of changes in Epithelial Mesenchymal Transition specific gene expression : N-Cadherin, E-Cadherin, Vimentin, Twist, Snail. Results. A significant down regulation of breast cancer cell proliferation in the presence of MSC secreted factors was observed (p<0.05). There was a dramatic increase in expression of EMT specific genes in both cell lines following exposure to MSC-secreted factors. Inclusion of antibodies to TGF, VEGF, MCP-1 and CCL5 inhibited the effect seen, suggesting these paracrine factors played a role in the elevated expression levels. Conclusion. MSCs clearly have a distinct paracrine effect on breast cancer epithelial cells, mediated at least in part through secretion of growth factors and chemokines. These factors play an important role in the metastatic cascade and may represent potential therapeutic targets to inhibit MSC-breast cancer interactions, helping to prevent the formation of bone metastases in cancer


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 291 - 298
1 Mar 2014
Murray IR Corselli M Petrigliano FA Soo C Péault B

The ability of mesenchymal stem cells (MSCs) to differentiate in vitro into chondrocytes, osteocytes and myocytes holds great promise for tissue engineering. Skeletal defects are emerging as key targets for treatment using MSCs due to the high responsiveness of bone to interventions in animal models. Interest in MSCs has further expanded in recognition of their ability to release growth factors and to adjust immune responses.

Despite their increasing application in clinical trials, the origin and role of MSCs in the development, repair and regeneration of organs have remained unclear. Until recently, MSCs could only be isolated in a process that requires culture in a laboratory; these cells were being used for tissue engineering without understanding their native location and function. MSCs isolated in this indirect way have been used in clinical trials and remain the reference standard cellular substrate for musculoskeletal engineering. The therapeutic use of autologous MSCs is currently limited by the need for ex vivo expansion and by heterogeneity within MSC preparations. The recent discovery that the walls of blood vessels harbour native precursors of MSCs has led to their prospective identification and isolation. MSCs may therefore now be purified from dispensable tissues such as lipo-aspirate and returned for clinical use in sufficient quantity, negating the requirement for ex vivo expansion and a second surgical procedure.

In this annotation we provide an update on the recent developments in the understanding of the identity of MSCs within tissues and outline how this may affect their use in orthopaedic surgery in the future.

Cite this article: Bone Joint J 2014;96-B:291–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 10 - 15
1 Jan 2012
Ollivere B Wimhurst JA M. Clark I Donell ST

The most frequent cause of failure after total hip replacement in all reported arthroplasty registries is peri-prosthetic osteolysis. Osteolysis is an active biological process initiated in response to wear debris. The eventual response to this process is the activation of macrophages and loss of bone.

Activation of macrophages initiates a complex biological cascade resulting in the final common pathway of an increase in osteolytic activity. The biological initiators, mechanisms for and regulation of this process are beginning to be understood. This article explores current concepts in the causes of, and underlying biological mechanism resulting in peri-prosthetic osteolysis, reviewing the current basic science and clinical literature surrounding the topic.