Advertisement for orthosearch.org.uk
Results 1 - 20 of 25
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 46 - 46
1 Jun 2018
Ranawat C
Full Access

Fixation of cemented femoral stems is reproducible and provides excellent early recovery of hip function in patients 60–80 years old. The durability of fixation has been evaluated up to 20 years with 90% survivorship. The mode of failure of fixation of cemented total hip arthroplasty is multi-factorial; however, good cementing techniques and reduction of polyethylene wear have been shown to reduce its incidence. The importance of surface roughness for durability of fixation is controversial. This presentation will describe my personal experience with the cemented femoral stem over 30 years with 3 designs and surface roughness (RA) ranging from 30 to 150 microinches. Results. Since 1978, three series of cemented THA have been prospectively followed using periodic clinical and radiographic evaluations. All procedures were performed by the author using the posterior approach. Excellent results and Kaplan-Meier survivorship ranges from 90% to 99.5% in the best case scenario were noted at 10 to 20 year follow-up. Conclusion. With a properly-designed femoral stem, good cement technique, proper cement mantle, and surface roughness of 30 to 40 microinches, the cemented femoral stem provides a durable hip replacement in patients 60 to 80 years old with up to 95% survivorship at 10 to 20 year follow-up


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 74 - 74
1 May 2019
Sierra R
Full Access

The number of cemented femoral stems implanted in the United States continues to slowly decrease over time. Approximately 10% of all femoral components implanted today are cemented, and the majority are in patients undergoing hip arthroplasty for femoral neck fractures. The European experience is quite different. In the UK, cemented femoral stems account for approximately 50% of all implants, while in the Swedish registry, cemented stems still account for the majority of implanted femoral components. Recent data demonstrating some limitations of uncemented fixation in the elderly for primary THA, may suggest that a cemented femoral component may be an attractive alternative in such a group. Two general philosophies exist with regards to the cemented femoral stem: Taper slip and Composite Beam. There are flagship implants representing both philosophies and select designs have shown excellent results past 30 years. A good femoral component design and cementing technique, however, is crucial for long-term clinical success. The author's personal preference is that of a “taper slip” design. The cemented Exeter stem has shown excellent results past 30 years with rare cases of loosening. The characteristic behavior of such a stem is to allow slight subsidence of the stem within the cement mantle through the process of cement creep. One or two millimeters of subsidence in the long-term have been observed with no detrimental clinical consequences. There have been ample results in the literature showing the excellent results at mid- and long-term in all patient groups. The author's current indication for a cemented stem include the elderly with no clear and definitive cutoff for age, most likely in females, THA for femoral neck fracture, small femoral canals such as those patients with DDH, and occasionally in patients with history of previous hip infection. Modern and impeccable cement technique is paramount for durable cemented fixation. It is important to remember that the goal is interdigitation of the cement with cancellous bone, so preparing the femur should not remove cancellous bone. Modern technique includes distal plugging of the femoral canal, pulsatile lavage, drying of the femoral canal with epinephrine or hydrogen peroxide, retrograde fill of the femoral canal with cement with appropriate suction and pressurization of the femoral cement into the canal prior to implantation of the femoral component. The dreaded “cement implantation syndrome” leading to sudden death can be avoided by appropriate fluid resuscitation prior to implanting the femoral component. This is an extremely rare occurrence today with reported mortality for the Exeter stem of 1 in 10,000. A cemented femoral component has been shown to be clinically successful at long term. Unfortunately, the art of cementing a femoral component has been lost and is rarely performed in the US. The number of cemented stems, unfortunately, may continue to go down as it is uncommonly taught in residency and fellowship, however, it might find a resurgence as the limits of uncemented fixation in the elderly are encountered. National joint registers support the use of cemented femoral components, and actually demonstrate higher survivorship at short term when compared to all other uncemented femoral components. A cemented femoral component should be in the hip surgeons armamentarium when treating patients undergoing primary and revision THA


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 116 - 116
1 Nov 2015
Berry D
Full Access

Fixation of cemented femoral stems is reproducible and provides excellent early recovery of hip function in patients 60–80 years old. The durability of fixation has been evaluated up to 20 years with 90% survivorship. The mode of failure of fixation of cemented total hip arthroplasty is multi-factorial; however, good cementing techniques and reduction of polyethylene wear have been shown to reduce its incidence. The importance of surface roughness for durability of fixation is controversial. This presentation will describe my personal experience with the cemented femoral stem over 30 years with 3 designs and surface roughness (RA) ranging from 30–150 microinches. RESULTS. Since 1978, three series of cemented THA have been prospectively followed using periodic clinical and radiographic evaluations. All procedures were performed by the author using the posterior approach. Excellent results and Kaplan-Meier survivorship ranged from 90–99.5% in the best case scenario were noted at 10–20-year follow-up. CONCLUSION. With a properly-designed femoral stem, good cement technique, proper cement mantle, and surface roughness of 30–40 microinches, the cemented femoral stem provides a durable hip replacement in patients 60–80 years old with up to 95% survivorship at 10–20-year follow-up


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 76 - 76
1 Aug 2017
Sierra R
Full Access

The number of cemented femoral stems implanted in the United States continues to slowly decrease over time. Approximately 10% of all femoral components implanted today are cemented, and the majority are in patients undergoing hip arthroplasty for femoral neck fractures. The European experience is quite different, in the UK, cemented femoral stems account for approximately 50% of all implants, while in the Swedish registry, cemented stems still account for the majority of implanted femoral components. Recent data demonstrating some limitations of uncemented fixation in the elderly for primary THA, may suggest that a cemented femoral component may be an attractive alternative in such a group. Two general philosophies exist with regards to the cemented femoral stem: Taper slip and Composite Beam. There are flagship implants representing both philosophies and select designs have shown excellent results past 30 years. A good femoral component design and cementing technique, however, is crucial for long-term clinical success. The authors' personal preference is that of a “taper slip” design. The cemented Exeter stem has shown excellent results past 30 years with rare cases of loosening. The characteristic behavior of such a stem is to allow slight subsidence of the stem within the cement mantle through the process of cement creep. One or two millimeters of subsidence in the long-term have been observed with no detrimental clinical consequences. There have been ample results in the literature showing the excellent results at mid- and long-term in all patient groups. The authors' current indications for a cemented stem include the elderly with no clear and definitive cutoff for age, most likely in females, THA for femoral neck fracture, small femoral canals such as those patients with DDH, and occasionally in patients with history of previous hip infection. Modern and impeccable cement technique is paramount for durable cemented fixation. It is important to remember that the goal is interdigitation of the cement with cancellous bone, so preparing the femur should not remove cancellous bone. Modern technique includes distal plugging of the femoral canal, pulsatile lavage, drying of the femoral canal with epinephrine or hydrogen peroxide, retrograde fill of the femoral canal with cement with appropriate suction and pressurization of the femoral cement into the canal prior to implantation of the femoral component. The dreaded “cement implantation syndrome” leading to sudden death can be avoided by appropriate fluid resuscitation prior to implanting the femoral component. This is a extremely rare occurrence today with reported mortality for the Exeter stem of 1 in 10,000. A cemented femoral component has been shown to be clinically successful at long term. Unfortunately, the art of cementing a femoral component has been lost and is rarely performed in the US. The number of cemented stems unfortunately may continue to go down as it is uncommonly taught in residency and fellowship, however it might find a resurgence as the limits of uncemented fixation in the elderly are encountered. National joint registers support the use of cemented femoral components, and actually demonstrate higher survivorship at short term when compared to all other uncemented femoral components. A cemented femoral component should be in the hip surgeons' armamentarium when treating patients undergoing primary and revision THA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 108 - 108
1 Nov 2016
Berry D
Full Access

A) Mastering the Art of Cemented Femoral Stem Fixation. Introduction: Fixation of cemented femoral stems is reproducible and provides excellent early recovery of hip function in patients 60–80 years old. The durability of fixation has been evaluated up to 20 years with 90% survivorship. The mode of failure of fixation of cemented total hip arthroplasty is multifactorial; however, good cementing techniques and reduction of polyethylene wear have been shown to reduce its incidence. The importance of surface roughness for durability of fixation is controversial. This presentation will describe my personal experience with the cemented femoral stem over 30 years with 3 designs and surface roughness (RA) ranging from 30–150 microinches. Results: Since 1978, three series of cemented THA have been prospectively followed using periodic clinical and radiographic evaluations. All procedures were performed by the author using the posterior approach. Excellent results were noted and Kaplan-Meier survivorship ranged from 90% to 99.5% in the best case scenario at 10–20 year follow-up. Conclusion: With a properly-designed femoral stem, good cement technique, proper cement mantle, and surface roughness of 30–40 microinches, the cemented femoral stem provides a durable hip replacement in patients 60 to 80 years of age with up to 95% survivorship at 10 to 20 years. B) Cemented Primary Acetabulum. Introduction: I am going to present a technique of cementing an all-polyethylene socket, a brief review of our clinical experience, and all-polyethylene socket design features. Since 1991, we have been using direct compression molded polyethylene sockets. The minimum thickness of polyethylene is 8 mm. We keep the socket orientation at 45 degrees of lateral opening and 15 degrees of anteversion. The preparation of the socket involves multiple fixation holes with Midas Rex. The bone is cleaned with water lavage and heated cement. Radiographic Features: The cement/bone interface has been classified into three types on radiographs. Type 1 has a perfect merge of the cement into the cancellous bone in all three zones. Type III interface shows radiolucency in one or more zones. A commonly asked question is, “is this technique reproducible?” The answer is yes. Our Data: We have looked at our all-polyethylene socket from 1992 to 1998 and the total number of hips are over 1,000, with a follow-up of 2–8 years. We have not revised a single socket for fixation failure. Summary: A cemented socket is indicated in patients 60 years and older with a diagnosis of osteoarthritis. Relative contraindications are excessive bleeding, extensive cyst formation, weak cancellous bone such as in rheumatoid, JRA, DDH, and protrusion patients. Cemented THA in patients 60 years and older with DJD and molded all-polyethylene cup have provided the best results in terms of a high degree of reproducibility, high quality of function, and durability


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 13 - 13
1 Jan 2016
Grosser D Benveniste S Bramwell D Krishnan J
Full Access

Background. Radiostereometric Analysis (RSA) is an accurate measure of implant migration following total joint replacement surgery. Early implant migration predicts later loosening and implant failure, with RSA a proven short-term predictor of long-term survivorship. The proximal migration of an acetabular cup has been demonstrated to be a surrogate measure of component loosening and the associated risk of revision. RSA was used to assess migration of the R3 acetabular component which utilises an enhanced porous ingrowth surface. Migration of the R3 acetabular component was also assessed when comparing the fixation technique of the femoral stems implanted. Methods. Twenty patients undergoing primary total hip arthroplasty were implanted with the R3 acetabular cup. The median age was 70 years (range, 53–87 years). During surgery tantalum markers were inserted into the acetabulum and the outer rim of the polyliner. RSA examinations were performed postoperatively at 4 to 5 days, 6, 12 and 24 months. Data was analysed for fourteen patients to determine the migration of the acetabular cup relative to the acetabulum. Of these fourteen patients, six were implanted with a cementless femoral stem and eight with a cemented femoral stem. Patients were clinically assessed using the Harris Hip Score (HHS) and Hip Disability and Osteoarthritis Outcome Score (HOOS) preoperatively and at 6, 12 and 24 months postoperatively. Results. RSA revealed no significant acetabular cup migration in all planes of translation and rotation with mean translations below 0.40 mm and mean rotations below 1 deg at 24 months. The data suggests that acetabular migration occurred primarily in the first 6 months postoperatively. We observed mean translations at 24 months of 0.36 mm (x-axis), 0.39 mm (y-axis) and 0.35 mm (z-axis). Mean rotations of 0.68 deg (x-axis), 0.99 deg (y-axis) and 0.77 deg (z-axis) were also observed at 24 months. Micromotion along the proximal-distal translation (y-axis) plane represented proximal migration of the acetabular component (Figure 1). On investigation of the femoral stems (cementless and cemented) implanted with the R3 acetabular cup, the mean proximal migration of the acetabular cup for both was 0.39 mm (CI 0.19–0.58). For cementless femoral stems a mean proximal migration of 0.45 mm (CI 0.09–0.98) and for cemented femoral stems a mean proximal migration of 0.35 mm (CI 0.24–0.45) were observed (Figure 1). A significant difference in the clinical assessment of patients when comparing pre-operative with 6, 12 and 24 months were also observed (p < 0.0001). All clinical assessments demonstrated equivalent results when comparing the post-operative follow-up time points and the R3 acetabular cup and stem combinations. Conclusions. Mean translations and rotations were higher than previously reported for acetabular components with the enhanced porous ingrowth surface. The magnitude of proximal migration 24 months postoperatively was within published ‘acceptable’ levels, albeit within the ‘at risk’ range of 0.2–1.0 mm. Comparison of the proximal migration for cementless and cemented femoral stems expressed similar outcomes, a trend also observed with the clinical assessments. These findings support further investigation and analysis of the R3 acetabular component


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 120 - 120
1 Dec 2016
Ranawat C
Full Access

Mastering the Art of Cemented Femoral Stem Fixation: Fixation of cemented femoral stems is reproducible and provides excellent early recovery of hip function in patients 60 to 80 years old. The durability of fixation has been evaluated up to 20 years with 90% survivorship. The mode of failure of fixation of cemented total hip arthroplasty is multi-factorial; however, good cementing techniques and reduction of polyethylene wear have been shown to reduce its incidence. The importance of surface roughness for durability of fixation is controversial. This presentation will describe my personal experience with the cemented femoral stem over 30 years with 3 designs and surface roughness (RA) ranging from 30 to 150 microinches. Cemented Primary Acetabulum: I am going to present a technique of cementing an all-poly socket. We have looked at our all-poly socket from 1992 to 1998 and the total number of hips are over 1,000, with a follow-up of 2 to 8 years. We have not revised a single socket for fixation failure


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 47 - 47
1 Feb 2015
Ranawat C
Full Access

A) Mastering the Art of Cemented Femoral Stem Fixation. Abstract:. Fixation of cemented femoral stems is reproducible and provides excellent early recovery of hip function in patients 60–80 years old. The durability of fixation has been evaluated up to 20 years with 90% survivorship. The mode of failure of fixation of cemented total hip arthroplasty is multi-factorial; however, good cementing techniques and reduction of polyethylene wear have been shown to reduce its incidence. The importance of surface roughness for durability of fixation is controversial. This presentation will describe my personal experience with the cemented femoral stem over 30 years with 3 designs and surface roughness (RA) ranging from 30 to 150µm. Results:. Since 1978, three series of cemented THA have been prospectively followed using periodic clinical and radiographic evaluations. All procedures were performed by the author using the posterior approach. Excellent results and Kaplan-Meier survivorship ranged from 90% to 99.5% in the best case scenario were noted at 10–20 year follow-up. Conclusion:. With a properly-designed femoral stem, good cement technique, proper cement mantle, and surface roughness of 30–40 microinches, the cemented femoral stem provides a durable hip replacement in patients 60–80 years old with up to 95% survivorship at 10–20 year follow-up. B) Cemented Primary Acetabulum. Introduction:. I am going to present a technique of cementing an all-poly socket, a brief review of our clinical experience, and all-poly socket design features. Since 1991, we have been using direct compression molded polyethylene sockets. The minimum thickness of poly is 8mm. We keep the socket orientation at 45 degrees of lateral opening and 15 degrees of anteversion. The preparation of the socket involves multiple fixation holes with Midas Rex. The bone is cleaned with water lavage. The cement is pressurised at a doughy state. Radiographic Features: The cement/bone interface has been classified into three types of radiograph. Type 1 has a perfect merge of the cement into the cancellous bone in all three zones. Type III interface shows radiolucency in one or more zones. A commonly asked question is, “is this technique reproducible?” The answer is “yes”. Our Data: We have looked at our all-poly socket from 1992 to 1998 and the total number of hips are over 1,000, with a follow-up of 2–8 years. We have not revised a single socket for fixation failure. Summary: The indication are patients 60 years and older with a diagnosis of osteoarthritis. Relative contraindications are excessive bleeding, extensive cyst formation, weak cancellous bone such as in rheumatoid, JRA, DDH, and protrusio patients. Cemented THA in patients 60 years and older with DJD and molded all-poly cup have provided the best results in terms of a high degree of reproducibility, high quality of function, and durability


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 130 - 130
1 May 2016
Kweon S Kim T Kim J Jeong K
Full Access

Purpose. The purpose of this study is to evaluate the clinical outcomes and and radiological findings of primary total hip arthroplasty(THA) performed by using cemented polished femoral stem. Materials and Methods. We retrospectively reviewed 91 hips (84 patients) that had undergone primary THA with cemented polished femoral stem after follow-up more than 10 years. The mean age at surgery was 57 years old (47 to 75). Mean follow up period was 12. 8 years(10.1 to 14). Clinical evaluation was performed using Harris hip score. The radiographic evaluation was performed in terms of the cementing technique, including of subsidence within the cement mantle, radiolucent lines at the cement-bone or cement-stem interface, cortical hypertrophy, and calcar resorption. Results. At the final follow-up, mean Harris hip score had improved from 55.2 points to 93.2 points. Barrack classification was 50 cases in A grade, 32 cases in B grade, 9 cases in C grade. Except only one case, subsidence of femoral stem was observed less than 2mm. There were no progressing radiolucent line and loosening of femoral stem. Conclusion. Our results in this study show good outcome for cemented polished femoral stem at follow-up more than 10 years


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 10 - 10
1 Jun 2018
Gonzalez Della Valle A
Full Access

In the 1960's Sir John Charnley introduced to clinical practice his low friction arthroplasty with a highly polished cemented femoral stem. The satisfactory long term results of this and other cemented stems support the use of polymethylmethacrylate (PMMA) for fixation. The constituents of PMMA remain virtually unchanged since the 1960s. However, in the last three decades, advances in the understanding of cement fixation, mixing techniques, application, pressurization, stem materials and design provided further improvements to the clinical results. The beneficial changes in cementing technique include femoral preparation to diminish interface bleeding, pulsatile lavage, reduced cement porosity by vacuum mixing, the use of a cement restrictor, pre-heating of the stem and polymer, retrograde canal filling and pressurization with a cement gun, stem centralization and stem geometries that increase the intramedullary pressure and penetration of PMMA into the cancellous structure of bone. Some other changes in cementing technique proved to be detrimental and were abandoned, such as the use of Boneloc cement that polymerised at a low temperature, and roughening and pre-coating of the stem surface. In the last two decades there has been a tendency towards an increased use of cementless femoral fixation for primary hip arthroplasty. The shift in the type of fixation followed the consistent, durable fixation obtained with uncemented acetabular cups, ease of implantation and the poor results of cemented femoral fixation of rough and pre-coated stems. Unlike cementless femoral fixation, modern cemented femoral fixation has numerous advantages: it is versatile, durable and can be used regardless of the diagnosis, proximal femoral geometry, natural neck version, and bone quality. It can be used in combination with antibiotics in patients with a history or predisposition for infection. Intra-operative femoral fractures are rare. However, the risk may be increased in collarless polished tapered stems. Post-operative thigh pain is extremely rare. Survivorship has not been surpassed by uncemented femoral fixation and it continues to be my preferred form of fixation. However, heavy, young, male patients may exhibit a slightly higher aseptic loosening rate


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 7 - 7
1 May 2016
Griffiths J Abouel-Enin S Yates P Carey-Smith R Quaye M Latham J
Full Access

In a society whereby the incidence of obesity is increasing and medico-legal implications of treatment failure are more frequently ending with the consulting doctor, clarity is required as to any restrictions placed on common orthopaedic implants by manufacturing companies. The aim of this study was to identify any restrictions placed on the commonly used femoral stem implants in total hip replacement (THR) surgery, by the manufacturers, based on patient weight. The United Kingdom (UK) National Joint Registry (NJR) was used to identify the five most commonly used cemented and uncemented femoral stem implants during 2012. The manufacturing companies responsible for these implants were asked to provide details of any weight restrictions placed on these implants. The Corail size 6 stem is the only implant to have a weight restriction (60Kg). All other stems, both cemented and uncemented, were free of any restrictions. Fatigue fracture of the femoral stem has been well documented in the literature, particularly involving the high nitrogen stainless steel cemented femoral stems and to a lesser extent the cemented cobalt chrome and uncemented femoral stems. In all cases excessive patient weight leading to increased cantilever bending of the femoral stem was thought to be a major factor contributing to the failure mechanism. From the current literature there is clearly an association between excessive patient weight and fatigue failure of the femoral stem. We suggest avoiding, where possible, the insertion of small stems (particularly cemented stems) and large offset stems (particularly those with a modular neck) in overweight patients


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 9 - 9
1 Dec 2016
Della Valle AG
Full Access

In the 1960s Sir John Charnley introduced to clinical practice his low friction arthroplasty with a highly polished cemented femoral stem. The satisfactory long term results of this and other cemented stems support the use of cement for fixation. The constituents of acrylic cement remained virtually unchanged since the 1960s. However, in the last three decades, advances in the understanding of cement fixation, mixing techniques, application, pressurization, stem materials and design provided further improvements in the clinical results. The technical changes in cementing technique that proved to be beneficial include femoral preparation to diminish interface bleeding, careful lavage, reduced cement porosity by vacuum mixing, a cement restrictor, pre-heating of the stem and polymer, retrograde canal filling and pressurization with a cement gun, stem centralization and stem geometries that increase the intramedullary pressure and intrusion into the bone of the cement. Some other changes proved to be detrimental and were abandoned, such as the use of Boneloc cement that polymerised at a low temperature, and roughening and pre-coating of stem surface. In recent years there has been a tendency towards an increased use of cementless femoral fixation for primary hip arthroplasty. The shift in the type of fixation followed the consistent, durable fixation obtained with uncemented acetabular cups, ease of implantation and the poor results of cemented femoral fixation of rough and precoated stems. Unlike cementless femoral fixation, modern cemented femoral fixation has numerous advantages: it's versatile, durable and can be used regardless of the diagnosis, proximal femoral geometry, natural neck version, and bone quality. It can be used in combination with antibiotics in patients with a history or predisposition for infection. Intraoperative femoral fractures and postoperative thigh pain are extremely rare. Survivorship has not been surpassed by uncemented femoral fixation and it continues to be my preferred form of fixation. However, heavy, young male patients may exhibit a slightly higher aseptic loosening rate


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_6 | Pages 6 - 6
1 May 2015
Veettil M Ward A Smith E
Full Access

We report the medium term outcome of a 15 degrees face-changing acetabular cup in THA due to secondary OA in DDH. We analysed 28 Hips in 26 patients who underwent THA between May 2007and September 2009. There were 20 females and 6 males with a mean age of 52 yrs (range 33–68yrs). All patients received a cementless Exceed Advanced Bearing Technology 15° Face-changing cup (Biomet) with a ceramic liner through a posterior approach. A cementless or a cemented femoral stem, with 28 or 32mm Biolox Delta ceramic head, was used in all cases. All patients started full weight-bearing the next day. The average clinical and radiological follow-up was for 50 months (range 36–76 months). The mean Harris Hip Score improved to 94 and the Oxford Hip Score improved to 44. There was 100% survivorship of the hip joint for both components. Post-operative radiographs revealed integration of the cup with no signs of loosening or osteolysis. The mean covered acetabular lip inclination angle was 51 degrees (range 43–61)and the true inclination angle of the bearing was 36 degrees (range 28–46). The clinical results support the use of the cementless 15 degrees face-changing acetabular cup in the dysplastic acetabulum


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 75 - 75
1 Nov 2015
Stulberg S
Full Access

As an increasing number of young, active, large patients are becoming candidates for total hip replacements, there is an increasingly urgent need to identify arthroplasties that will be durable, highly functional and amenable to possible future successful revision. In an era when cemented femoral stems were the primary implant option, the concept of a surface replacement was attractive and, perhaps, appropriate. However, cementless femoral stems of many designs now provide dependable long-term fixation and excellent, near normal function in patients of all ages, sex and level of activity. However, a number of issues related to cementless stem fixation could be further improved: Optimization of load transfer to proximal femur to minimise fracture risk and maximise bone preservation; Elimination of proximal-distal mismatch concerns, including bowed femurs; Facilitation of femoral stem insertion, especially with MIS THA exposures; Facilitation of revision with implants capable of providing durable fixation for active patients. The potential benefits of short stem femoral THA implants include: Ease of insertion; Reproducibility of insertion; Avoidance of issues related to proximal-distal anatomic mismatch or variations in proximal femoral diaphyseal anatomy (e.g. femoral bowing); Facilitation of MIS surgical approaches, especially anterior exposures; Optimization of proximal femoral load transfer with consequent maximization of proximal bone preservation. The purpose of this presentation is to describe the design rationale and characteristics of short (< 115 mm) uncemented primary THA femoral stem, to evaluate the clinical and radiographic results of short stems and to discuss the possible drawbacks specific to the use of short stems


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 11 - 11
1 Feb 2015
Lombardi A
Full Access

As an increasing number of young, active, large patients are becoming candidates for total hip replacements, there is an increasingly urgent need to identify arthroplasties that will be durable, highly functional and amenable to possible future successful revision. In an era when cemented femoral stems were the primary implant option, the concept of a surface replacement was attractive and, perhaps, appropriate. However, cementless femoral stems of many designs now provide dependable long-term fixation and excellent, near normal function in patients of all ages, sex and level of activity. However, a number of issues related to cementless stem fixation could be further improved: Optimization of load transfer to proximal femur to minimise fracture risk and maximise bone preservation; Elimination of proximal-distal mismatch concerns, including bowed femurs; Facilitation of femoral stem insertion, especially with MIS THA exposures; Facilitation of revision with implants capable of providing durable fixation for active patients. The potential benefits of short stem femoral THA implants include: Ease of insertion; Reproducibility of insertion; Avoidance of issues related to proximal-distal anatomic mismatch or variations in proximal femoral diaphyseal anatomy (e.g. femoral bowing); Facilitation of MIS surgical approaches, especially anterior exposures; Optimization of proximal femoral load transfer with consequent maximization of proximal bone preservation. The purpose of this presentation is to describe the design rationale and characteristics of short (<115mm) uncemented primary THA femoral stem, to evaluate the clinical and radiographic results of short stems and to discuss the possible drawbacks specific to the use of short stems


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 74 - 74
1 Jul 2014
Stulberg S
Full Access

As an increasing number of young, active, large patients are becoming candidates for total hip replacements, there is an increasingly urgent need to identify arthroplasties that will be durable, highly functional and amenable to possible future successful revision. In an era when cemented femoral stems were the primary implant option, the concept of a surface replacement was attractive and, perhaps, appropriate. However, cementless femoral stems of many designs now provide dependable long-term fixation and excellent, near normal function in patients of all ages, sex and level of activity. However, a number of issues related to cementless stem fixation could be further improved: Optimisation of load transfer to proximal femur to minimise fracture risk and maximise bone preservation; Elimination of proximal-distal mismatch concerns, including bowed femurs; Facilitation of femoral stem insertion, especially with MIS THA exposures; Facilitation of revision with implants capable of providing durable fixation for active patients. The potential benefits of short stem femoral THA implants include: Ease of insertion; Reproducibility of insertion; Avoidance of issues related to proximal-distal anatomic mismatch or variations in proximal femoral diaphyseal anatomy (e.g. femoral bowing); Facilitation of MIS surgical approaches, especially anterior exposures; Optimisation of proximal femoral load transfer with consequent maximisation of proximal bone preservation. The purpose of this presentation is to describe the design rationale and characteristics of short (< 115mm) uncemented primary THA femoral stem, to evaluate the clinical and radiographic results of short stems and to discuss the possible drawbacks specific to the use of short stems


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 125 - 125
1 Apr 2017
Kraay M
Full Access

The well-fixed cemented femoral stem and surrounding cement can be challenging to remove. Success requires evaluation of the quality of the cement mantle (interface lucency), position of the stem, extent of cement below the tip of the stem and skill with the specialised instruments and techniques needed to remove the stem and cement without perforating the femur. Smooth surfaced stems can usually be easily removed from the surrounding cement mantle with a variety of stem extractors that attach to the trunnion or an extraction hole on the implant. Roughened stems can be freed from the surrounding cement mantle with osteotomes or a narrow high speed burr and then extracted with the above instruments. Following this, the well-fixed cement mantle needs to be removed. Adequate exposure and visualization of the cement column is essential to remove the well-fixed cement without damage to the bone in the femur. This is important since fixation of a revision femoral component typically requires at least 4 cm of contact with supportive cortical bone, which can be difficult to obtain if the femur is perforated or if the isthmus damaged. Proximally, cement in the metaphyseal region can be thinned with a high speed burr, then split radially and removed piecemeal. It is essential to remember that both osteotomes and high speed burrs will cut thru bone easier than cement and use of these instruments poses a substantial risk of unintended bone removal and perforation of the femur if done improperly. These instruments should, as a result, be used under direct vision. Removal of more distal cement in the femur typically requires use of an extended femoral osteotomy (ETO) to allow for adequate access to the well-fixed cement in the bowed femoral canal. An ETO also facilitates more efficient removal of cement in the proximal femur. The ETO should be carefully planned so that it is distal enough to allow for access to the end of the cement column and still allow for stable fixation of a new implant. Too short of an ETO increases the risk of femoral perforation since the straight cement removal instruments cannot negotiate the bowed femoral canal to access the end of the cement column without risk of perforation. An ETO that is too distal makes cement removal easier, but may not allow for sufficient fixation of a new revision femoral stem. Cement below the level of the ETO cannot be directly visualised and specialised instruments are necessary to safely remove this distal cement. Radiofrequency cement removal devices use high frequency (ultrasonic) radio waves to melt the cement within the canal. Although cement removal with these devices is time consuming and tedious, they do substantially reduce the chances of femoral perforation. These devices can, however, generate considerable heat locally and can result in thermal injury to the bone and surrounding tissues. Once the distal end of the cement mantle is penetrated, backbiting or hooked curettes can be use to remove any remaining cement from within the canal. It is important that all cement be removed from the femur since reamers used for preparation of the distal canal will be deflected by any retained cement, which could result in eccentric reaming and inadvertent perforation of the femur and make fixation of a new implant very challenging. An intra-operative x-ray can be very helpful to insure that all cement has been removed before reaming is initiated. One should always plan for a possible femoral perforation and have cortical strut grafts and a stem available that will safely bypass the end of the cement column and the previous cement restrictor


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 12 - 12
1 May 2013
Stulberg S
Full Access

As an increasing number of young, active large patients become candidates for total hip replacements, there is an increasingly urgent need to identify arthroplasties that will be durable, highly functional and amenable to possible future successful revision. In an era when cemented femoral stems were the primary implant option, the concept of a surface replacement was attractive and, perhaps, appropriate. However, cementless femoral stems of many designs now provide dependable long term fixation and excellent, near normal function. However, a number of issues related to cementless stem fixation could be further improved: . –. Optimisation of load transfer to proximal femur to minimize fracture risk and maximize bone preservation. –. Elimination of proximal-distal mismatch concerns, including bowed femurs. –. Facilitation of femoral stem insertion, especially with MIS THA exposures. –. Facilitation of revision with implants capable of providing durable fixation for active patients. The potential benefits of short stem femoral THA implants include: . –. Ease of insertion. –. Avoidance of issues related to proximal-distal anatomic mismatch or variations in proximal femoral diaphyseal anatomy (e.g. femoral bowing). –. Facilitation of MIS surgical approaches, especially anterior exposures. –. Optimisation of proximal femoral load transfer with consequent maximisation of proximal bone preservation. However, a number of potential drawbacks may be associated with the use of cementless short stems: . –. Initial and durable fixation may be highly sensitive to implant design and surface treatment. –. The implants may not be suitable for patients with osteopenia. Consistent, reliable identification of patients appropriate for these implants may be difficult. –. There may be a significant learning curve associated with the use of short stem implants. At this time, it is important to realize that not all short stem implants are equal. In view of the reliability of a large number of uncemented femoral stems of conventional length, surgeons should base their use of specific short stems upon clinical evidence of their safety and durability


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 33 - 33
1 Sep 2012
Kazzaz S Cox G Deakin M
Full Access

Introduction. Current literature supports the use of total hip replacement (THR) for the treatment of displaced intra-capsular proximal femoral fractures (DIPFF). Case series of patients receiving this treatment show dislocation rates higher than that of patients who have THR to treat osteoarthritis. Large diameter THR have mechanical advantages in terms of dislocation and their role in PFF has yet to be assessed. Objectives. To assess the role of large-diameter total hip replacements on the rate of dislocation when used to treat displaced intra-capsular proximal femoral fractures. Design: Single surgeon, case series. Setting: Level I trauma centre. Inclusion criteria:. Displaced intra-capsular proximal femoral fracture (Garden III & IV). Independently mobile pre-operatively for distances greater than a mile, with no more than 1 stick as a mobility aid. Abbreviated mental test score of 9/10 or greater. Exclusion criteria:. Patient under 60. Pathological fractures. Additional fractures of the femur. Outcomes. Mortality. Morbidity (Including dislocation). Oxford Hip Score. SF12. Patients/Participants: Retrospective study to assess patients who presented between May 2006 and December 2008 and met the requirements had a CPTÒ (Zimmer) cemented femoral stem, using 3. rd. generation cementation techniques, and large diameter Duronò (Zimmer) head and cup (uncemented) inserted as a primary procedure via a modified Hardinge technique. Follow up was via routine clinic appointments, letter to GP and phone conversation with patient. Results. 67 patients were selected (49 female) average age was 74.6 (67–87). Follow-up was for an average of 14 months (3–39 months). No dislocations or deaths were recorded for this period of time. Conclusions. This study suggests that the high rates of dislocation associated with THR for PPF can be limited by the use of large diameter components. This study should be followed up by a multi-centre multi-surgeon study


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXI | Pages 109 - 109
1 May 2012
M. R K. M D. JE H. DA P. AB
Full Access

Introduction. Despite evidence of long term survival of cemented femoral stem prostheses, studies have shown concerns in the longevity of the cemented sockets. This has led to a rise in the use of uncemented and hybrid implants (with uncemented cup and cemented stem) without long term studies to determine evidence for their use. We aimed to assess whether there is any difference in clinical outcome between cemented and non-cemented acetabular fixation in elderly patients. Patients and Methods. Between February 2001 and August 2006 186 patients over 72 years of age were prospectively randomised to receive either a cemented Exeter cup or a HA coated press fit cementless cup. Both groups received a cemented Exeter stem. The patients were assessed pre-operatively and reviewed at 6 weeks, 6 months and yearly in a research clinic, by an independent observer. Outcome measures were the Merle D'Aubigné, Postel, Oxford Hip and Visual analogue pain scores. The implants were also assessed radiographically and all complications were recorded. Results. During the trial 97 patients (mean age 79.13, range 72-90) were randomised to receive a cemented cup (60 right: 37 left) and 89 (mean age 77.65, range 72-95) an uncemented ABG II cup. There was a mean follow-up of 57.6 months (max 9 years) . Statistically there was no significant difference between the two methods of acetabular fixation in outcome measures but radiologically there was a significant difference in wear and loosening (p< 0.001) with cemented cups wearing at a mean of 0.35mm/yr and uncemented cups 0.08mm/yr. Conclusion. Both methods of fixation were demonstrated to have a good outcome with low complication rates. There would appear to be a significant difference in wear rate and osteolysis in this age group between the methods of fixation up to 9 years