Advertisement for orthosearch.org.uk
Results 1 - 20 of 202
Results per page:
Bone & Joint Research
Vol. 12, Issue 1 | Pages 33 - 45
16 Jan 2023
Li B Ding T Chen H Li C Chen B Xu X Huang P Hu F Guo L

Aims

Circular RNA (circRNA) is involved in the regulation of articular cartilage degeneration induced by inflammatory factors or oxidative stress. In a previous study, we found that the expression of circStrn3 was significantly reduced in chondrocytes of osteoarthritis (OA) patients and OA mice. Therefore, the aim of this paper was to explore the role and mechanism of circStrn3 in osteoarthritis.

Methods

Minus RNA sequencing, fluorescence in situ hybridization, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of circStrn3 in human and mouse OA cartilage tissues and chondrocytes. Chondrocytes were then stimulated to secrete exosomal miR-9-5p by cyclic tensile strain. Intra-articular injection of exosomal miR-9-5p into the model induced by destabilized medial meniscus (DMM) surgery was conducted to alleviate OA progression.


Introduction. The degree of cartilage degeneration assessed intraoperatively may not be sufficient as a criterion for patellar resurfacing in total knee arthroplasty (TKA). However, single-photon emission tomography/computed tomography (SPECT/CT) is useful for detecting osteoarthritic involvement deeper in the subchondral bone. The purpose of the study was to determine whether SPECT/CT reflected the cartilage lesion underneath the patella in patients with end-stage osteoarthritis (OA) and whether clinical outcomes after TKA without patellar resurfacing differed according to the severity of patellofemoral (PF) OA determined by visual assessment and SPECT/CT findings. Methods. This study included 206 knees which underwent TKA. The degree of cartilage degeneration was graded intraoperatively according to the International Cartilage Repair Society grading system. Subjects were classified into four groups according to the degree of bone tracer uptake (BTU) on SPECT/CT in the PF joint. The Feller's patella score and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were assessed preoperatively and postoperative 1 and 2 years. Results. The increased BTU in the PF joint was associated with more severe degenerative cartilage changes underneath the patella (P < 0.001). The risk for the presence of denudated cartilage was greater in the high uptake group (odds ratio = 5.89). There was no association between clinical outcomes and visual grading of patellar cartilage degeneration or the degree of BTU on SPECT/CT. Discussion and Conclusions. The visual assessment of the degree of cartilage degeneration underneath the patella and preoperative SPECT/CT evaluation of the PF joint were not predictive of clinical outcome after TKA with unresurfaced patella


Bone & Joint Research
Vol. 5, Issue 4 | Pages 137 - 144
1 Apr 2016
Paterson SI Eltawil NM Simpson AHRW Amin AK Hall AC

Objectives. During open orthopaedic surgery, joints may be exposed to air, potentially leading to cartilage drying and chondrocyte death, however, the long-term effects of joint drying in vivo are poorly understood. We used an animal model to investigate the subsequent effects of joint drying on cartilage and chondrocytes. Methods. The patellar groove of anaesthetised rats was exposed (sham-operated), or exposed and then subjected to laminar airflow (0.25m/s; 60 minutes) before wounds were sutured and animals recovered. Animals were monitored for up to eight weeks and then sacrificed. Cartilage and chondrocyte properties were studied by histology and confocal microscopy, respectively. Results. Joint drying caused extensive chondrocyte death within the superficial regions of cartilage. Histology of dried cartilage demonstrated a loss of surface integrity at four weeks, fibrillations at eight weeks, and an increased modified Mankin score (p < 0.001). Cartilage thickness increased (p < 0.001), whereas chondrocyte density decreased at four weeks (p < 0.001), but then increased towards sham-operated levels (p < 0.01) at eight weeks. By week eight, chondrocyte pairing/clustering and cell volume increased (p < 0.05; p < 0.001, respectively). Conclusions. These in vivo results demonstrated for the first time that as a result of laminar airflow, cartilage degeneration occurred which has characteristics similar to those seen in early osteoarthritis. Maintenance of adequate cartilage hydration during open orthopaedic surgery is therefore of paramount importance. Cite this article: Dr A. Hall. Drying of open animal joints in vivo subsequently causes cartilage degeneration. Bone Joint Res 2016;5:137–144. DOI: 10.1302/2046-3758.54.2000594


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 83 - 83
1 Jul 2020
Yao H Xu J Qin L Zheng N Wang J Ho KW
Full Access

Previous study reported that intra-articular injection of MgSO4 could alleviate pain related behaviors in a collagenase induced OA model in rats. It provided us a good description on the potential of Mg2+ in OA treatment. However, the specific efficiency of Mg2+ on OA needs to be further explored and confirmed. The underlying mechanisms should be elucidated as well. Increasing attention has been paid on existence of synovial fluid MSCs (SF-MSCs) (not culture expanded) which may participate in endogenous reparative capabilities of the joint. On the other hand, previous studies demonstrated that Mg2+ not only promoted the expression of integrins but also enhanced the strength of fibronectin-integrin bonds that indicated the promotive effect of Mg2+ on cell adhesion, moreover, Mg2+ was proved could enhance chondrogenic differentiation of synovial membrane derived MSCs by modulating integrins. Based on these evidence, we hypothesize herein intra-articular injection of Mg2+ can attenuate cartilage degeneration in OA rat through modulating the biological behavior of SF-MSCs. Human and rat SF-MSCs were collected after obtaining Experimental Ethics approval. The biological behaviors of both human and rat SF-MSCs including multiple differentiation, adhesion, colony forming, proliferation, etc. were determined in vitro in presence or absence of Mg2+ (10 mmol/L). Male SD rats (body weight: 450–500 g) were used to establish anterior cruciate ligament transection and partial medial meniscectomy (ACLT+PMM) OA models. The rats received ACLT+PMM were randomly divided into saline (control) group and MgCl2 (0.5 mol/L) group (n=6 per group). Intra-articular injection was performed on week 4 post-operation, twice per week for two weeks. Knee samples were harvested on week 2, 4, 8, 12 and 16 after injection for histological analysis for assessing the progression of OA. On week 2 and 4 after injection, the rat SF-MSCs were also isolated before the rats were sacrificed for assessing the abilities of chondrogenic differentiation, colony forming and adhesion in vitro. Statistical analysis was done using Graphpad Prism 6.01. Unpaired t test was used to compare the difference between groups. Significant difference was determined at P < 0 .05. The adhesion and chondrogenic differentiation ability of both human and rat SF-MSCs were significantly enhanced by Mg2+ (10 mmol/L) supplementation in vitro. However, no significant effects of Mg2+ (10 mmol/L) on the osteogenic and adipogenic differentiation as well as the colony forming and proliferation. In the animal study, histological analysis by Saffranin O and Toluidine Blue indicated the cartilage degeneration was significantly alleviated by intra-articular injection of Mg2+, in addition, the expression of Col2 in cartilage was also increased in MgCl2 group with respect to control group indicated by immunohistochemistry. Moreover, the OARSI scoring was decreased in MgCl2 group as well. Histological analysis and RT-qPCR indicated that the chondrogenic differentiation of SF-MSCs isolated from Mg2+ treated rats were significantly enhanced compare to control group. In the current study, we have provided direct evidence supporting that Mg2+ attenuated the progression of OA. Except for the effect of Mg2+ on preventing cartilage degeneration had been demonstrated in this study, for the first time, we demonstrated the promoting effect of Mg2+ on adhesion and chondrogenic differentiation of endogenous SF-MSCs within knee joint that may favorite cartilage repair. We have confirmed that the anti-osteoarthritic effect of Mg2+ involves the multiple actions which refer to prevent cartilage degeneration plus enhance the adhesion and chondrogenic differentiation of SF-MSCs in knee joint to attenuate the progression of OA. These multiple actions of Mg2+ may be more advantage than traditional products. Besides, this simple, widely available and inexpensive administration of Mg2+ has the potential on reducing the massive heath economic burden of OA. However, the current data just provided a very basic concept, the exact functions and underlying mechanisms of Mg2+ on attenuating OA progression still need to be further explored both in vitro and in vivo. Formula of Mg2+ containing solution also need to be optimized, for example, a sustained and controlled release delivery system need to be developed for improving the long-term efficacy


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 130 - 130
1 Mar 2017
Ryu K Iriuchishima T Saito S Nagaoka M Ryu J Tokuhashi Y
Full Access

Introduction. Oriental people habitually adopt formal sitting and squatting postures, the extreme flexion of the knees allowing of this. The influence exercised by pressure and posture are, therefore, found at the posterior side of knee joint. However, we don't have many report about articular cartilage of posterior femoral condyle. Objectives. The purpose of this study was to reveal the accurate prevalence and related factors to the presence of degenerative changing of the articular cartilage of posterior femoral condyle in cadaveric knee joints. Methods. One hundred and thirty two knees from 66 cadavers (42 male knees and 24 female knees, formalin fixed, Japanese anatomical specimens) were included in this study. The average age of the cadavers was 81.4 (56–101) years. Knees were macroscopically evaluated the depth of cartilage degeneration of the patellofemoral joint, medial and lateral femoral condyle, medial and lateral posterior femoral condyle following the Outerbridge's classification. Grading was as follows: Grade 1: normal cartilage or softening and swelling of the cartilage. Grade 2: partial-thickness defect which did not reach the subchondral bone and was less than 1.3 cm in diameter. Grade 3: partial-thickness defect which did not reach the subchondral bone and was more than 1.3 cm in diameter. Grade 4: exposed subchondral bone and visible reactive tissue formation. When there were multiple lesions of different Outerbridge's classification grades, the sizes of the lesions were added up. Lesions with degenerative changes more severe than Outerbridge's classification grade 3 were regarded as OA lesions. Statistical analysis was performed to reveal the correlation between the occurrences of cartilage degeneration of medial and lateral posterior femoral condyle and medial and lateral femoral condyle and gender. Results. The prevalence of OA-positive was 48.5% (64 knees). Analyzing in the prevalence in gender, male was 31% (26 knees) OA-positive, female was 79.2% (38knees) OA-positive. The frequency of OA-positive was significantly higher in females than in males (P < 0.001). The prevalence of OA-positive in posterior condyle was 53.1% (34 knees) in 64 knees of OA-positive. Analyzing in the prevalence in gender, male was 15.4% (4 knees) in 26 knees of OA-positive, female was 78.4% (30knees) in 38 knees of OA-positive. The frequency of OA-positive in posterior condyle was significantly higher in females than in males (P < 0.001). Conclusions. In this study, the prevalence of OA-positive in posterior condyle was evaluated in cadaveric knees. The prevalence of OA-positive in posterior condyle was 53.1% in OA-positive knees, and was significantly correlated with the gender


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 129 - 129
1 Jul 2014
Oomen P Meijer K van der Westen R Gransier R Emans P van Rhijn L
Full Access

Summary. The quantification of T1Rho relaxation times is not related with internal loading. Improvements in modeling and imaging techniques might lead to better understanding of the pathomechanics of the knee. Introduction. The onset and progression of knee osteoarthritis has been associated with an increased external knee adduction moment (EKAM). However, this external measure has no direct relationship with internal loading of the knee. For a better understanding of the pathomechanics of the knee musculoskeletal models could be used to relate external and internal knee loading. Consequently, high internal loading might cause cartilage degeneration in patients with OA. T1RhoMRI can detect changes in proteoglycan content and is therefore a non-invasive measure of cartilage degeneration in knee OA. The purpose of this study was to relate internal loading of the knee simulated by musculoskeletal models with cartilage health using T1rhoMRI. Patients & Methods. Preliminary results showed data of seven women (50–65yrs), four healthy and three OA. Subjects underwent 3D gait analysis (VICON Nexus) at comfortable walking speed, EKAM was calculated. Simulations of multi-body musculoskeletal models were driven based on the motion capture data, in order to calculate internal medial-lateral knee forces (MLforce). Besides a T1RhoMRI scan of the knee (Phillips 3T) provided cartilage health of the midsection of the medial condyle according to Pedersen et al, 2011 [4]. Differences between healthy and OA were tested with a one sided T-test, correlations between EKAM and MLforce were calculated. Results. Anthropometrics and walking speed showed no significantly different between OA patients and healthy controls. OA patients had significant larger EKAM and MLforce (p<0.05). T1Rho values were not significantly different between the groups. EKAM was positively correlated with MLforce (R. 2. =0.91, p<0.05) in healthy subjects, no association was found in knee OA patients (R. 2. < 0.01). Discussion / Conclusion. The current study demonstrates that external loading of the knee does not predict internal loading in knee OA patients. We did not find a significant effect of knee OA on cartilage quality assessed by T1Rho MRI. However a non-significant increase was visible at the posterior region of the femoral condyle in OA patients. This elevated T1Rho relaxation is in line with expectations and could be related to an increased cartilage degeneration


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 3 - 3
11 Apr 2023
Kubo Y Fragoulis A Beckmann R Wolf M Nebelung S Wruck C Pufe T Jahr H
Full Access

Nuclear factor erythroid 2–related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is key in maintaining redox homeostasis and the pathogenesis of osteoarthritis (OA) involves oxidative distress. We thus investigated whether Nrf2/ARE signaling may control expression of key chondrogenic differentiation and hyaline cartilage maintenance factor SOX9.

In human C-28/I2 chondrocytes SOX9 expression was measured by RT–qPCR after shRNA-mediated knockdown of Nrf2 or its antagonist the Kelch-like erythroid cell-derived protein with cap “n” collar homology-associated protein 1 (Keap1). Putative ARE-binding sites in the proximal SOX9 promoter region were inactivated, cloned into pGL3, and co-transfected with phRL–TK for dual-luciferase assays to verify whether Nrf2 transcriptionally regulates SOX9. SOX9 promoter activity without and with Nrf2-inducer methysticin were analyzed. Sox9 expression in articular chondrocytes was correlated to cartilage thickness and degeneration in wild-type (WT) and Nrf2-knockout mice. Data were analyzed by one-way ANOVA, a Student's t-test, or Wilcoxon rank-sum test, according to the normal distribution. Statistical significance was set to p < 0.05.

While Keap1-specific RNAi increased SOX9 expression, Nrf2-specific RNAi significantly decreased it. Putative ARE sites (ARE1, ARE2) were identified in the SOX9 promoter region. ARE2 mutagenesis significantly reduced SOX9 promoter activity, while truncation of ARE1 did not. A functional ARE2 site was thus essential for methysticin-mediated induction of SOX9 promoter activity. Knee cartilage of young Nrf2-knockout mice further revealed significantly fewer Sox9-positive chondrocytes as compared to old Nrf2-knockout animals, which further showed thinner cartilage and more severe cartilage erosion.

Our data suggest that SOX9 expression in articular cartilage is directly Nrf2-dependent and that pharmacological Nrf2 activation may hold potential to diminish age-dependent osteoarthritic changes in knee cartilage through improving protective SOX9 expression.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 675 - 688
1 Oct 2020
Shao L Gou Y Fang J Hu Y Lian Q Zhang Y Wang Y Tian F Zhang L

Aims

Parathyroid hormone (PTH) (1-34) exhibits potential in preventing degeneration in both cartilage and subchondral bone in osteoarthritis (OA) development. We assessed the effects of PTH (1-34) at different concentrations on bone and cartilage metabolism in a collagenase-induced mouse model of OA and examined whether PTH (1-34) affects the JAK2/STAT3 signalling pathway in this process.

Methods

Collagenase-induced OA was established in C57Bl/6 mice. Therapy with PTH (1-34) (10 μg/kg/day or 40 μg/kg/day) was initiated immediately after surgery and continued for six weeks. Cartilage pathology was evaluated by gross visual, histology, and immunohistochemical assessments. Cell apoptosis was analyzed by TUNEL staining. Microcomputed tomography (micro-CT) was used to evaluate the bone mass and the microarchitecture in subchondral bone.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 731 - 741
28 Oct 2020
He Z Nie P Lu J Ling Y Guo J Zhang B Hu J Liao J Gu J Dai B Feng Z

Aims

Osteoarthritis (OA) is a disabling joint disorder and mechanical loading is an important pathogenesis. This study aims to investigate the benefits of less mechanical loading created by intermittent tail suspension for knee OA.

Methods

A post-traumatic OA model was established in 20 rats (12 weeks old, male). Ten rats were treated with less mechanical loading through intermittent tail suspension, while another ten rats were treated with normal mechanical loading. Cartilage damage was determined by gross appearance, Safranin O/Fast Green staining, and immunohistochemistry examinations. Subchondral bone changes were analyzed by micro-CT and tartrate-resistant acid phosphatase (TRAP) staining, and serum inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA).


Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims. As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). Methods. Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections. Results. Experimental knees immobilized for four weeks demonstrated mean PEAs of 141°, 72°, and 79° after zero, two, and four weeks of remobilization (n = 6 per group), respectively. Experimental knees demonstrated reduced PEAs after two weeks (p < 0.001) and four weeks (p < 0.0001) of remobilization compared to controls. Following eight weeks of immobilization, experimental knees exhibited mean PEAs of 82°, 73°, and 72° after zero, two, and four weeks of remobilization, respectively. Histological analysis demonstrated no cartilage degeneration. Similar trends in biomechanical and histological properties were observed when intra-articular violation was introduced. Conclusion. This study established a novel mouse model of robust knee contracture without evidence of OA. This was appreciated consistently after eight weeks of immobilization and was irrespective of length of remobilization. As such, this arthrofibrotic model provides opportunities to investigate molecular pathways and therapeutic strategies. Cite this article: Bone Joint Res 2023;12(1):58–71


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 5 | Pages 669 - 673
1 Jul 2004
Bock P Kristen K Kröner A Engel A

This study relates the extent of cartilage lesions within the first metatarsophalangeal joint to hallux valgus.

We prospectively examined 265 first metatarsophalangeal joints of 196 patients with a mean age of 54.2 years at operation for the existence of cartilage lesions.

Grade I lesions were found in 41 feet (15.5%), grade II in 82 (30.9%), grade III in 51 (19.3%), grade IV in 20 (7.5%). Only 71 (26.8%) showed no cartilage lesion. Cartilage lesions were found within the metatarsosesamoid and metatarsophalangeal compartments in 66 feet (34.0%), within the metatarsophalangeal compartment in 26 (13.4%) and within the metatarsosesamoid compartment in 102 (52.6%). A statistically significant correlation was found between the grade of cartilage lesion and the hallux valgus angle, both for the changes within the metatarsophalangeal and the metatarsosesamoid joints.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 18 - 18
1 Nov 2018
Vadalà G
Full Access

Irisin is a hormone-like myokine released from skeletal muscle during exercise. It has also been reported that irisin levels in serum and synovial fluid of knee osteoarthritis (OA) patients were negatively correlated with OA severity. We hypothesized that irisin might play a role in the cartilage homeostasis mediated by physical activity. Therefore, this study aims to explore the cross talk between skeletal muscle and cartilage tissues in human with OA mediated by the myokine irisin. Human articular OA chondrocytes were isolated, expanded and cultured in micro-mass 3-D culture system. Pellets were cultured with or without r-Irisin, and then activated by protein inhibitors of p38-MAPK signalling pathway. After one week the amount of GAG content was evaluated. Quantitative gene expression of Coll-X and Coll-II was performed. WB was utilized to detect expressions of p38-MAPK signalling pathway and Coll-X and Coll-II. In the current study, chondrocytes cultured in r-Irisin showed a significant higher GAG/DNA content compared to control (p<0.05). Moreover, r-Irisin promoted a significant increase of the expression collagen type II and decrease of collagen type X in (p<0.05). This OA chondrocytes recovery was abrogated by the p38 MAPK and ERK signalling pathways. Our observation suggests that Irisin targets chondrocytes promoting GAG content, increasing Collagen Type II and decreasing Collagen type X gene expressions. The observed OA chondrocyte recovery mediated by irisin is obtained through the inactivation of p38/ERK MAP kinase signalling cascades in vitro. This is the first study that demonstrates a cross-talk between muscle and cartilage mediated by irisin.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 283 - 283
1 Mar 2004
Saarakkala S Hirvonen J Laasanen M Nieminen H Jurvelin J TšyrŠs J
Full Access

Aims: The objective of this study was to investigate the ability of ultrasound backscattering to detect degeneration of articular cartilage. For this aim, ultrasound B-mode images were acquired from the surfaces of normal and degenerated bovine cartilage samples. Methods: Cylindrical osteochondral samples (n=31) with different degenerative cartilage appearance were prepared from the bovine patellae. Subsequently, degenerative stages of the samples were quantiþed using the Mankin score method. Ultrasound B-mode images of the samples were obtained using a 20 MHz ultrasound instrument (CortexTech.,Denmark).Biomechanical reference measurements were conducted using a stress-relaxation protocol (10% prestrain, 10% strain, 2 mm/s ramp velocity) in unconþned compression geometry. Results: Average reßection coefþcient ( ARC) (r=0.58) and integrated reßection coefþcient ( IRC) (r=0.53) correlated positively with the cartilage dynamic modulus. Furthermore, moduli decreased as a function of Mankin score (r ≤ −0.68). Finally, strong linear correlations were established between the backscattering parameters and the Mankin score (r=−0.79 for the ARC and r =−0.78 for the IRC). Conclusions: Results of this study suggest that ultrasound backscattering from the articular surface is able to diagnose the degeneration of AC. Theoretically, it is also possible to evaluate changes in subchondral bone with the backscatter measurements. In conclusion, ultrasound backscattering, when applied arthroscopically in vivo, may signiþcantly beneþt clinical diagnostics of early osteoarthrosis as well as monitoring of tissue healing after cartilage repair surgery.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 62 - 62
17 Apr 2023
Herren A Luczak A Amin A Hall A
Full Access

Early changes within articular cartilage during human idiopathic osteoarthritis are poorly understood. However alterations to chondrocyte morphology occur with the development of fine cytoplasmic processes and cell clusters, potentially playing a role in cartilage degeneration. The aggrecanase ADAMTS-4 (A disintegrin and metalloproteinase with thrombospondin motifs-4) has been implicated as an important factor in cartilage degradation, so we investigated the relationship between chondrocyte morphology and levels of ADAMTS-4 in both non-degenerate and mildly osteoarthritic human cartilage. Human femoral heads were obtained following consent from patients undergoing hip arthroplasty following femoral neck fracture. Cartilage explants of normal (grade 0; G0) and mildly osteoarthritic (grade 1; G1) cartilage were labelled with the cytoplasmic dye CMFDA (5-chloromethylfluorescein-diacetate). Explants were cryosectioned (30μm sections), and labelled for ADAMTS-4 by fluorescence immunohistochemistry. Sections were imaged with confocal microscopy, allowing the semi-quantitative analysis of ADAMTS-4 and 3D visualisation of in situ cell morphology. With cartilage degeneration from G0 to G1, there was a decrease in the proportion of chondrocytes with normal rounded morphology (P<0.001) but an increase in the proportion of cells with processes (P<0.01) and those in clusters (P<0.001;[4(1653)]; femoral heads:cells). Although average levels of ADAMTS-4 for all cells was the same between G0 and G1 (P>0.05), a change was evident in the distribution curves for cell-specific ADAMTS-4 labelling. Cell-by-cell analysis showed that ADAMTS-4 levels were higher in chondrocytes with cytoplasmic processes compared to normal cells (P=0.044) however cells in clusters had lower levels than normal cells (P=0.003;[3(436)]). Preliminary data suggested that ADAMTS-4 levels increased with larger chondrocyte clusters. These results suggest complex heterogeneous changes to levels of cell-associated ADAMTS-4 with early cartilage degeneration – increasing in cells with processes and initially decreasing in clusters. Increased levels of ADAMTS-4 are likely to produce focal areas of matrix weakness potentially leading to early cartilage degeneration


Bone & Joint Research
Vol. 11, Issue 7 | Pages 453 - 464
20 Jul 2022
Wang H Shi Y He F Ye T Yu S Miao H Liu Q Zhang M

Aims. Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). Growth differentiation factor 11 (GDF11) is crucial in inhibiting the differentiation of bone marrow mesenchymal stem cells into adipocytes. However, whether GDF11 participates in the abnormal adipogenesis of chondrocytes in OA cartilage is still unclear. Methods. Six-week-old female mice were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical staining (IHC), and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. Primary condylar chondrocytes of rats were stimulated with fluid flow shear stress (FFSS) and collected for oil red staining, immunofluorescence staining, qRT-PCR, and immunoprecipitation analysis. Results. Abnormal adipogenesis, characterized by increased expression of CCAAT/enhancer-binding protein α (CEBPα), fatty acid binding protein 4 (FABP4), Perilipin1, Adiponectin (AdipoQ), and peroxisome proliferator-activated receptor γ (PPARγ), was enhanced in the degenerative cartilage of TMJ OA in UAC mice, accompanied by decreased expression of GDF11. After FFSS stimulation, there were fat droplets in the cytoplasm of cultured cells with increased expression of PPARγ, CEBPα, FABP4, Perilipin1, and AdipoQ and decreased expression of GDF11. Exogenous GDF11 inhibited increased lipid droplets and expression of AdipoQ, CEBPα, and FABP4 induced by FFSS stimulation. GDF11 did not affect the change in PPARγ expression under FFSS, but promoted its post-translational modification by small ubiquitin-related modifier (SUMOylation). Local injection of GDF11 alleviated TMJ OA-related cartilage degeneration and abnormal adipogenesis in UAC mice. Conclusion. Abnormal adipogenesis of chondrocytes and decreased GDF11 expression were observed in degenerative cartilage of TMJ OA. GDF11 supplementation effectively inhibits the adipogenesis of chondrocytes and thus alleviates TMJ condylar cartilage degeneration. GDF11 may inhibit the abnormal adipogenesis of chondrocytes by affecting the SUMOylation of PPARγ. Cite this article: Bone Joint Res 2022;11(7):453–464


Bone & Joint Research
Vol. 10, Issue 3 | Pages 173 - 187
1 Mar 2021
Khury F Fuchs M Awan Malik H Leiprecht J Reichel H Faschingbauer M

Aims. To explore the clinical relevance of joint space width (JSW) narrowing on standardized-flexion (SF) radiographs in the assessment of cartilage degeneration in specific subregions seen on MRI sequences in knee osteoarthritis (OA) with neutral, valgus, and varus alignments, and potential planning of partial knee arthroplasty. Methods. We retrospectively reviewed 639 subjects, aged 45 to 79 years, in the Osteoarthritis Initiative (OAI) study, who had symptomatic knees with Kellgren and Lawrence grade 2 to 4. Knees were categorized as neutral, valgus, and varus knees by measuring hip-knee-angles on hip-knee-ankle radiographs. Femorotibial JSW was measured on posteroanterior SF radiographs using a special software. The femorotibial compartment was divided into 16 subregions, and MR-tomographic measurements of cartilage volume, thickness, and subchondral bone area were documented. Linear regression with adjustment for age, sex, body mass index, and Kellgren and Lawrence grade was used. Results. We studied 345 neutral, 87 valgus, and 207 varus knees. Radiological JSW narrowing was significantly (p < 0.01) associated with cartilage volume and thickness in medial femorotibial compartment in neutral (r = 0.78, odds ratio (OR) 2.33) and varus knees (r = 0.86, OR 1.92), and in lateral tibial subregions in valgus knees (r = 0.87, OR 3.71). A significant negative correlation was found between JSW narrowing and area of subchondral bone in external lateral tibial subregion in valgus knees (r = −0.65, p < 0.01) and in external medial tibial subregion in varus knees (r = −0.77, p < 0.01). No statistically significant correlation was found in anterior and posterior subregions. Conclusion. SF radiographs can be potentially used for initial detection of cartilage degeneration as assessed by MRI in medial and lateral but not in anterior or posterior subregions. Cite this article: Bone Joint Res 2021;10(3):173–187


Bone & Joint Research
Vol. 13, Issue 10 | Pages 596 - 610
21 Oct 2024
Toegel S Martelanz L Alphonsus J Hirtler L Gruebl-Barabas R Cezanne M Rothbauer M Heuberer P Windhager R Pauzenberger L

Aims. This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated. Methods. Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA). Results. Cartilage degeneration of the humeral head was associated with the histological presentation of: 1) pannus overgrowing the cartilage surface; 2) pores in the subchondral bone plate; and 3) chondrocyte clusters in OmA patients. In contrast, hyperplasia of the synovial lining layer was revealed as a significant indicator of inflammatory processes predominantly in CTA. The abundancy of collagen I, collagen II, and the C1,2C neoepitope correlated significantly with the histopathological degeneration of humeral head cartilage. No evidence for differences in MMP levels between OmA and CTA patients was found. Conclusion. This study provides a comprehensive histological characterization of humeral cartilage and synovial tissue within the glenohumeral joint, both in normal and diseased states. It highlights synovitis and pannus formation as histopathological hallmarks of OmA and CTA, indicating their roles as drivers of joint inflammation and cartilage degradation, and as targets for therapeutic strategies such as rotator cuff reconstruction and synovectomy. Cite this article: Bone Joint Res 2024;13(10):596–610


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 139 - 139
2 Jan 2024
Rösch G Rapp AE Tsai P Kohler H Taheri S Schilling AF Zaucke F Slattery D Jenei-Lanzl Z
Full Access

Osteoarthritis (OA) affects the whole joint and leads to chronic pain. The sympathetic nervous system (SNS) seems to be involved in OA pathogenesis, as indicated by in vitro studies as well as by our latest work demonstrating that sympathectomy in mice results in increased subchondral bone volume in the OA knee joint. We assume that chronic stress may lead to opposite effects, such as an increased bone loss in OA due to an elevated sympathetic tone. Therefore, we analyzed experimental OA progression in mice exposed to chronic stress. OA was induced in male C57BL/6J mice by surgical destabilization of the medial meniscus (DMM) and Sham as well as non-operated mice served as controls. Half of these groups were exposed to chronic unpredictable mild stress (CUMS). After 12 weeks, chronic stress efficiency was assessed using behavioral tests. In addition to measuring body weight and length, changes in subchondral bone were analyzed by μCT. Dynamic Weight Bearing system was used to monitor OA-related pain. Histological scoring will be conducted to investigate the severity cartilage degeneration and synovial inflammation. CUMS resulted in increased anxiety and significant decrease in body weight gain in all CUMS groups compared to non-CUMS groups. CUMS also increased serum corticosterone in healthy mice, with even higher levels in CUMS mice after DMM surgery. CUMS had no significant effect on subchondral bone, but subarticular bone mineral density and trabecular thickness were increased. Moreover, CUMS resulted in significant potentiation of DMM-associated pain. Our results suggest that the autonomic imbalance with increased sympathetic nervous activity induced by chronic stress exacerbates the severity of OA pain perception. We expect significantly increased cartilage degeneration as well as more severe synovial inflammation in CUMS DMM mice compared to DMM mice


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 142 - 142
11 Apr 2023
Algarni M Amin A Hall A
Full Access

Cartilage degeneration and loss are key events in the initiation and progression of osteoarthritis (OA). Changes to chondrocyte volume and morphology (in the form of cytoplasmic processes) and thus cell phenotype are implicated, as they lead to the production of a mechanically-weakened extracellular matrix. The chondrocyte cytoskeleton is intimately linked to cell volume and morphology and hence we have investigated alterations to levels and distribution of chondrocyte F-actin that occur during early OA. The femoral heads (FH) from hip joints (N=16) were obtained with ethical permission and patient consent following femoral neck fracture. Cartilage was assessed as grade 0 (non-degenerate) and grade 1 (superficial fibrillation) using OARSI criteria. In situ chondrocyte volume and F-actin distribution were assessed using the fluorescent indicators (5-chloromethyl fluorescein diacetate (CMFDA)) and phalloidin, and imaged and quantified by confocal microscopy, Imaris. TM. and ImageJ software. There were no differences between the volume or total F-actin levels of in situ chondrocytes within the superficial zone of grade 0 (n=164 cells) compared to grade 1 (n=145) cartilage (P>0.05). However, a more detailed analysis of phalloidin labelling was performed, which demonstrated significant increases in both intense punctuate (IP) or intense areas (IA) (P<0.0001; P=0.0175 respectively). A preliminary analysis of IP and IA F-actin labelling suggested that while the former did not appear to be associated with changes to chondrocyte morphology, most of the cytoplasmic processes were associated with the presence of IA at the starting point of the protrusion. These results demonstrate marked changes to F-actin distribution in chondrocytes in the very early stages of cartilage degeneration as occurs in OA. These subtle changes are probably an early indication of a change to the chondrocyte phenotype and thus worthy of further study as they may lead to deleterious alterations to matrix metabolism and ultimately cartilage weakening


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 119 - 119
14 Nov 2024
Rösch G Rapp AE Tsai PL Kohler H Taheri S Schilling AF Zaucke F Slattery D Lanzl ZJ
Full Access

Introduction. Osteoarthritis (OA) is a chronic degenerative disease of the entire joint leading to joint stiffness and pain (PMID:33571663). Recent evidence suggests that the sympathetic nervous system (SNS) plays a role in the pathogenesis of OA (PMID:34864169). A typical cause for long-term hyperactivity of the SNS is chronic stress. To study the contribution of increased sympathetic activity, we analyzed the progression of OA in chronically stressed mice. Method. We induced OA in male C57BL/6J mice by destabilizing the medial meniscus (DMM)(PMID:17470400) and exposed half of these mice to chronic unpredictable mild stress (CUMS)(PMID:28808696). Control groups consisted of sham-operated mice with and without CUMS exposure. After 12 weeks, CUMS efficacy was determined by assessing changes in body weight gain and activity of mice, measuring splenic norepinephrine and serum corticosterone levels. OA progression was studied by histological analysis of cartilage degeneration and synovitis, and by μCT to evaluate changes in calcified cartilage and subchondral bone microarchitecture. A dynamic weight-bearing system was used to assess OA-related pain. Result. CUMS resulted in significantly decreased body weight gain and activity, as well as increased splenic norepinephrine and serum corticosterone concentrations compared to the respective controls. Surprisingly, already DMM alone resulted in elevated stress hormone levels. CUMS significantly exacerbated cartilage degeneration and synovial inflammation and increased OA pain in DMM mice. The underlying cellular and molecular mechanisms are currently being analyzed using FACS, single cell RNAseq, and spatial proteomics. Conclusion. Overall, chronic stress exacerbates OA severity and pain. Moreover, increased levels of stress hormones were observed in OA mice without CUMS induction, suggesting a complex bi-directional interaction between the SNS and OA. Targeting the autonomic nervous system, such as attenuating the SNS but also stimulating the activity of the parasympathetic nervous system, as a counterpart of the SNS, may therefore be promising for novel preventive or causal treatments of OA