Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIX | Pages 98 - 98
1 Jul 2012
Bansal GJ Kamath S Agarwal S
Full Access

Purpose of the study. Release of tight lateral structures is an integral part of balancing the valgus knee during knee replacement surgery. The posterolateral capsule is released through an inside-out technique. The common peroneal nerve is in close proximity to the capsule during this step. This study was undertaken to determine the distance of the nerve and the safe level for the posterolateral release. Methods. MR scans of the knee of 100 patients were evaluated. The age range of selected patients was 50 to 70 years. The distance of the nerve was measured to the closest point on the posterolateral capsule. Two separate measurements were taken - one 9mm above the joint line indicating the distal femoral resection level and the other 9mm distal to the joint line indicating the level of tibial resection. A third point was at the joint line level. The position of the nerve was also recorded in relation to the cross section of the femur/tibia on a ‘clock-like’ reference. Results. The mean distance of the nerve from the capsule was 13.4mm at level of distal femoral resection, 12.4mm at the level of the joint line and 10.9mm at the level of tibial resection. The minimum distance was 8.2mm at the proximal level, 6.7mm at the level of joint line and 4.7mm at the distal level. Conclusions. The common peroneal nerve is in close proximity to the resected femur and tibia in knee replacement surgery. The posterolateral capsular release should be done at the level of distal femoral resection using electrocautery to minimise risk of damage to the nerve


Bone & Joint Research
Vol. 11, Issue 1 | Pages 32 - 39
27 Jan 2022
Trousdale WH Limberg AK Reina N Salib CG Thaler R Dudakovic A Berry DJ Morrey ME Sanchez-Sotelo J van Wijnen A Abdel MP

Aims. Outcomes of current operative treatments for arthrofibrosis after total knee arthroplasty (TKA) are not consistently positive or predictable. Pharmacological in vivo studies have focused mostly on prevention of arthrofibrosis. This study used a rabbit model to evaluate intra-articular (IA) effects of celecoxib in treating contracted knees alone, or in combination with capsular release. Methods. A total of 24 rabbits underwent contracture-forming surgery with knee immobilization followed by remobilization surgery at eight weeks. At remobilization, one cohort underwent capsular release (n = 12), while the other cohort did not (n = 12). Both groups were divided into two subcohorts (n = 6 each) – one receiving IA injections of celecoxib, and the other receiving injections of vehicle solution (injections every day for two weeks after remobilization). Passive extension angle (PEA) was assessed in live rabbits at 10, 16, and 24 weeks, and disarticulated limbs were analyzed for capsular stiffness at 24 weeks. Results. IA celecoxib resulted in greater mean PEA at ten weeks (69.6° (SD 4.6) vs 45.2° (SD 9.6), p = 0.004), 16 weeks (109.8° (SD 24.2) vs 60.9° (SD10.9), p = 0.004), and 24 weeks (101.0° (SD 8.0) vs 66.3° (SD 5.8), p = 0.004). Capsular stiffness was significantly reduced with IA celecoxib (2.72 Newton per cm (N·cm)/° (SD 1.04), p = 0.008), capsular release (2.41 N·cm/° (SD 0.80), p = 0.008), and capsular release combined with IA celecoxib (3.56 N·cm/° (SD 0.99), p = 0.018) relative to IA vehicle (6.09 N·cm/° (SD 1.64)). Conclusion. IA injections of a celecoxib led to significant improvements in passive extension angles, with reduced capsular stiffness, when administered to rabbit knees with established experimental contracture. Celecoxib was superior to surgical release, and the combination of celecoxib and a surgical release did not provide any additional value. Cite this article: Bone Joint Res 2022;11(1):32–39


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 49 - 58
1 Jun 2020
Mullaji A

Aims. The aims of this study were to determine the effect of osteophyte excision on deformity correction and soft tissue gap balance in varus knees undergoing computer-assisted total knee arthroplasty (TKA). Methods. A total of 492 consecutive, cemented, cruciate-substituting TKAs performed for varus osteoarthritis were studied. After exposure and excision of both cruciates and menisci, it was noted from operative records the corrective interventions performed in each case. Knees in which no releases after the initial exposure, those which had only osteophyte excision, and those in which further interventions were performed were identified. From recorded navigation data, coronal and sagittal limb alignment, knee flexion range, and medial and lateral gap distances in maximum knee extension and 90° knee flexion with maximal varus and valgus stresses, were established, initially after exposure and excision of both cruciate ligaments, and then also at trialling. Knees were defined as ‘aligned’ if the hip-knee-ankle axis was between 177° and 180°, (0° to 3° varus) and ‘balanced’ if medial and lateral gaps in extension and at 90° flexion were within 2 mm of each other. Results. Of 50 knees (10%) with no soft tissue releases (other than cruciate ligaments), 90% were aligned, 81% were balanced, and 73% were aligned and balanced. In 288 knees (59%) only osteophyte excision was performed by subperiosteally releasing the deep medial collateral ligament. Of these, 98% were aligned, 80% were balanced, and 79% were aligned and balanced. In 154 knees (31%), additional procedures were performed (reduction osteotomy, posterior capsular release, and semimembranosus release). Of these, 89% were aligned, 68% were balanced, and 66% were aligned and balanced. The superficial medial collateral ligament was not released in any case. Conclusion. Two-thirds of all knees could be aligned and balanced with release of the cruciate ligaments alone and excision of osteophytes. Excision of osteophytes can be a useful step towards achieving deformity correction and gap balance without having to resort to soft tissue release in varus knees while maintaining classical coronal and sagittal alignment of components. Cite this article: Bone Joint J 2020;102-B(6 Supple A):49–58


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 14 - 14
1 Oct 2020
Mayman DJ Elmasry SS Chalmers BP Sculco PK Kahlenberg C Wright TE Westrich GH Imhauser CW Cross MB
Full Access

Introduction. Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture. However, the effect of joint line proximalization on TKA kinematics is unclear. Thus, our goal was to quantify the effect of additional distal femoral resection on knee extension and mid-flexion laxity. Methods. Six computational knee models with TKA-specific capsular and collateral ligament properties were implanted with a contemporary posterior-stabilized TKA. A 10° flexion contracture was modeled to simulate a capsular contracture. Distal femoral resections of +2 mm and +4 mm were simulated for each model. The knees were then extended under standardized torque to quantify additional knee extension achieved. Subsequently, varus and valgus torques of ±10 Nm were applied as the knee was flexed from 0° to 90° at the baseline, +2 mm, and +4 mm distal resections. Coronal laxity, defined as the sum of varus and valgus angulation with respective torques, was measured at mid-flexion. Results. With +2 mm and +4 mm of distal femoral resection, the knee extended an additional 4°±0.5° and 8°±0.75°, respectively. At 30° and 45°of flexion, baseline laxity averaged 4.8° and 5.0°, respectively. At +2 mm resection, mean coronal laxity increased by 3.1° and 2.7° at 30° and 45°of flexion, respectively. At +4 mm resection, mean coronal laxity increased by 6.5° and 5.5° at 30° and 45° of flexion, respectively. Maximal increased coronal laxity for a +4 mm resection occurred at a mean 16° (range, 11–27°) of flexion with a mean increased laxity of 7.8° from baseline. Conclusion. While additional distal femoral resection in primary TKA increases knee extension, the consequent joint line elevation induces up to 8° of coronal laxity in mid-flexion in this computational model. As such, posterior capsular release prior to resecting additional distal femur to correct a flexion contracture should be considered


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 112 - 115
1 Nov 2012
Su EP

Fixed flexion deformities are common in osteoarthritic knees that are indicated for total knee arthroplasty. The lack of full extension at the knee results in a greater force of quadriceps contracture and energy expenditure. It also results in slower walking velocity and abnormal gait mechanics, overloading the contralateral limb. Residual flexion contractures after TKA have been associated with poorer functional scores and outcomes. Although some flexion contractures may resolve with time after surgery, a substantial percentage will become permanent. Therefore, it is essential to correct fixed flexion deformities at the time of TKA, and be vigilant in the post-operative course to maintain the correction. Surgical techniques to address pre-operative flexion contractures include: adequate bone resection, ligament releases, removal of posterior osteophytes, and posterior capsular releases. Post-operatively, extension can be maintained with focused physiotherapy, a specially modified continuous passive motion machine, a contralateral heel lift, and splinting


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_11 | Pages 58 - 58
1 Oct 2019
Mullaji AB Panjwani T
Full Access

Aims. The aims of this prospective study were to determine the effect of osteophyte excision on deformity correction and soft-tissue gap balance in varus knees undergoing computer-assisted total knee arthroplasty (TKA). Patients and Methods. Four-hundred twenty-five consecutive, cemented, cruciate-substituting TKAs were analysed. Pre-operative varus was calculated on long leg weight-bearing HKA film. Limb deformity in coronal (varus) and sagittal (flexion) planes, medial and lateral gap distances in maximum knee extension and 90° knee flexion and maximum knee flexion were recorded before and after excision of medial femoral and tibial osteophytes using computer navigation. Data was extracted and analysed to assess the effect of removal of osteophytes on the correction of deformity and soft tissue balance. Results. Before removal of any osteophytes or soft tissue releases, 138 out of 425 (32%) achieved correction of deformity (HKA 180+2°). In the remaining knees, after osteophyte removal 183 knees (43%) achieved correction of deformity. Overall, 75% knees achieved deformity correction after removal of osteophytes. For the remaining 25% knees, additional procedures (such as capsular release, semimembranosus release, reduction osteotomy) were needed for deformity correction. Conclusion. Three-fourths of all knees were aligned with no release or only removal of osteophytes. Excision of medial femoral and tibial osteophytes can be a useful, initial step towards achieving deformity correction and gap balance without having to resort to soft-tissue release during TKA in varus knees. This is useful information for surgeons to desist from any soft tissue releases till osteophytes have been meticulously excised. For figures, tables, or references, please contact authors directly


Bone & Joint Open
Vol. 5, Issue 11 | Pages 992 - 998
6 Nov 2024
Wignadasan W Magan A Kayani B Fontalis A Chambers A Rajput V Haddad FS

Aims

While residual fixed flexion deformity (FFD) in unicompartmental knee arthroplasty (UKA) has been associated with worse functional outcomes, limited evidence exists regarding FFD changes. The objective of this study was to quantify FFD changes in patients with medial unicompartmental knee arthritis undergoing UKA, and investigate any correlation with clinical outcomes.

Methods

This study included 136 patients undergoing robotic arm-assisted medial UKA between January 2018 and December 2022. The study included 75 males (55.1%) and 61 (44.9%) females, with a mean age of 67.1 years (45 to 90). Patients were divided into three study groups based on the degree of preoperative FFD: ≤ 5°, 5° to ≤ 10°, and > 10°. Intraoperative optical motion capture technology was used to assess pre- and postoperative FFD. Clinical FFD was measured pre- and postoperatively at six weeks and one year following surgery. Preoperative and one-year postoperative Oxford Knee Scores (OKS) were collected.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 628 - 636
2 Aug 2024
Eachempati KK Parameswaran A Ponnala VK Sunil A Sheth NP

Aims

The aims of this study were: 1) to describe extended restricted kinematic alignment (E-rKA), a novel alignment strategy during robotic-assisted total knee arthroplasty (RA-TKA); 2) to compare residual medial compartment tightness following virtual surgical planning during RA-TKA using mechanical alignment (MA) and E-rKA, in the same set of osteoarthritic varus knees; 3) to assess the requirement of soft-tissue releases during RA-TKA using E-rKA; and 4) to compare the accuracy of surgical plan execution between knees managed with adjustments in component positioning alone, and those which require additional soft-tissue releases.

Methods

Patients who underwent RA-TKA between January and December 2022 for primary varus osteoarthritis were included. Safe boundaries for E-rKA were defined. Residual medial compartment tightness was compared following virtual surgical planning using E-rKA and MA, in the same set of knees. Soft-tissue releases were documented. Errors in postoperative alignment in relation to planned alignment were compared between patients who did (group A) and did not (group B) require soft-tissue releases.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 87 - 93
1 Jun 2021
Chalmers BP Elmasry SS Kahlenberg CA Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK Cross MB

Aims

Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture, which leads to femoral joint line elevation. There is a paucity of data describing the effect of joint line elevation on mid-flexion stability and knee kinematics. Thus, the goal of this study was to quantify the effect of joint line elevation on mid-flexion laxity.

Methods

Six computational knee models with cadaver-specific capsular and collateral ligament properties were implanted with a posterior-stabilized (PS) TKA. A 10° flexion contracture was created in each model to simulate a capsular contracture. Distal femoral resections of + 2 mm and + 4 mm were then simulated for each knee. The knee models were then extended under a standard moment. Subsequently, varus and valgus moments of 10 Nm were applied as the knee was flexed from 0° to 90° at baseline and repeated after each of the two distal resections. Coronal laxity (the sum of varus and valgus angulation with respective maximum moments) was measured throughout flexion.


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 74 - 80
1 Jun 2021
Deckey DG Rosenow CS Verhey JT Brinkman JC Mayfield CK Clarke HD Bingham JS

Aims

Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA.

Methods

A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and tibial components and overall limb alignment remained 0 ± 3°; planned tibial posterior slope was 1.5°. Mean deviations from plan for each parameter were compared between groups for positioning and size and outliers were assessed.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 123 - 128
1 Jun 2020
Martin JR Geary MB Ransone M Macknet D Fehring K Fehring T

Aims

Aseptic loosening of the tibial component is a frequent cause of failure in primary total knee arthroplasty (TKA). Management options include an isolated tibial revision or full component revision. A full component revision is frequently selected by surgeons unfamiliar with the existing implant or who simply wish to “start again”. This option adds morbidity compared with an isolated tibial revision. While isolated tibial revision has a lower morbidity, it is technically more challenging due to difficulties with exposure and maintaining prosthetic stability. This study was designed to compare these two reconstructive options.

Methods

Patients undergoing revision TKA for isolated aseptic tibial loosening between 2012 and 2017 were identified. Those with revision implants or revised for infection, instability, osteolysis, or femoral component loosening were excluded. A total of 164 patients were included; 88 had an isolated tibial revision and 76 had revision of both components despite only having a loose tibial component. The demographics and clinical and radiological outcomes were recorded.


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1230 - 1237
1 Oct 2019
Kayani B Konan S Horriat S Ibrahim MS Haddad FS

Aims

The aim of this study was to assess the effect of posterior cruciate ligament (PCL) resection on flexion-extension gaps, mediolateral soft-tissue laxity, fixed flexion deformity (FFD), and limb alignment during posterior-stabilized (PS) total knee arthroplasty (TKA).

Patients and Methods

This prospective study included 110 patients with symptomatic osteoarthritis of the knee undergoing primary robot-assisted PS TKA. All operations were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess gaps before and after PCL resection in extension and 90° knee flexion. Measurements were made after excision of the anterior cruciate ligament and prior to bone resection. There were 54 men (49.1%) and 56 women (50.9%) with a mean age of 68 years (sd 6.2) at the time of surgery. The mean preoperative hip-knee-ankle deformity was 4.1° varus (sd 3.4).


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 642 - 647
1 May 2012
Mullaji A Lingaraju AP Shetty GM

We retrospectively reviewed the records of 1150 computer-assisted total knee replacements and analysed the clinical and radiological outcomes of 45 knees that had arthritis with a pre-operative recurvatum deformity. The mean pre-operative hyperextension deformity of 11° (6° to 15°), as measured by navigation at the start of the operation, improved to a mean flexion deformity of 3.1° (0° to 7°) post-operatively. A total of 41 knees (91%) were managed using inserts ≤ 12.5 mm thick, and none had mediolateral laxity > 2 mm from a mechanical axis of 0° at the end of the surgery. At a mean follow-up of 26.4 months (13 to 48) there was significant improvement in the mean Knee Society, Oxford knee and Western Ontario and McMaster Universities Osteoarthritis Index scores compared with the pre-operative values. The mean knee flexion improved from 105° (80° to 125°) pre-operatively to 131° (120° to 145°), and none of the limbs had recurrent recurvatum.

These early results show that total knee replacement using computer navigation and an algorithmic approach for arthritic knees with a recurvatum deformity can give excellent radiological and functional outcomes without recurrent deformity.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 787 - 792
1 Jun 2012
Thomsen MG Husted H Bencke J Curtis D Holm G Troelsen A

The purpose of this study was to investigate whether a gender-specific high-flexion posterior-stabilised (PS) total knee replacement (TKR) would offer advantages over a high-flex PS TKR regarding range of movement (ROM), ‘feel’ of the knee, pain and satisfaction, as well as during activity. A total of 24 female patients with bilateral osteoarthritis entered this prospective, blind randomised trial in which they received a high-flex PS TKR in one knee and a gender-specific high-flexion PS TKR in the other knee. At follow-up, patients were assessed clinically measuring ROM, and questioned about pain, satisfaction and daily ‘feel’ of each knee. Patients underwent gait analysis pre-operatively and at one year, which yielded kinematic, kinetic and temporospatial parameters indicative of knee function during gait. At final follow-up we found no statistically significant differences in ROM (p = 0.82). The median pain score was 0 (0 to 8) in both groups (p = 0.95). The median satisfaction score was 9 (4 to 10) in the high-flex group and 8 (0 to 10) in the gender-specific group (p = 0.98). The median ‘feel’ score was 9 (3 to 10) in the high-flex group and 8 (0 to 10) in the gender-specific group (p = 0.66). Gait analysis showed no statistically significant differences between the two prosthetic designs in any kinematic, kinetic or temporospatial parameters.

Both designs produced good clinical results with significant improvements in several gait parameters without evidence of any advantage in the gender-specific design.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1186 - 1192
1 Sep 2008
Lyu S

The outcome of arthroscopic medial release of 255 knees in 173 patients for varying grades of osteoarthritis involving the medial compartment is reported. All operations were performed by a single surgeon between January 2001 and May 2003. The Knee Society score for pain and the patient’s subjective satisfaction were used for the outcome evaluation. Overall, satisfactory outcome was reported for 197 knees (77.3%) and the mean Knee Society score for pain improved from 17.6 (95% confidence interval, 16.7 to 18.5), pre-operatively to 39.4 (95% confidence interval, 37.9 to 41.1) (p < 0.001). There were minor manageable complications of persistent effusion in 16 knees and prolonged wound discomfort in 11. In total, 15 of the 21 knees with poor results were converted to total knee replacements and two other patients (three knees) were offered this option after a mean period of 16 months.

Based on these observations arthroscopic medial release is an effective treatment for osteoarthritis of the medial compartment of the knee joint and can be expected to reduce the pain in the majority of patients for at least four years post-operatively.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 333 - 336
1 Mar 2005
Bae DK Yoon KH Kim HS Song SJ

Between July 1986 and August 1996, we performed 32 total knee arthroplasties (TKA) on 32 patients with partially or completely ankylosed knees secondary to infection. Their mean age at surgery was 40 years (20 to 63) and the mean follow-up was ten years (5 to 13). The mean post-operative range of movement was 75.3° (30 to 115) in those with complete and 98.7° (60 to 130) in those with partial ankylosis. The mean Hospital for Special Surgery knee score increased from 57 to 86 points post-operatively. There were complications in four knees (12.5%), which included superficial infection (one), deep infection (one), supracondylar femoral fracture (one) and transient palsy of the common peroneal nerve (one). Although TKA in the ankylosed knee is technically demanding and has a considerable rate of complications, reasonable restoration of function can be obtained by careful selection of patients, meticulous surgical technique, and aggressive rehabilitation.