Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 29 - 29
1 Dec 2020
Thahir A Lim JA West C Krkovic M
Full Access

Intro. Calcium sulphate (CS) is a recent alternative for antibiotic elution in infected bones and joints. The purpose of this study is to evaluate the use of antibiotic impregnated calcium sulphate (AICS) beads in the management of infected tibia and femur, with regards to patient outcomes and complication rates (including reinfection rate, remission rate and union rate). Methods. Searches of AMED, CINAHL, EMBASE, EMCARE, Medline, PubMed and Google Scholar were conducted in June 2020, with the mesh terms: “Calcium sulphate beads” or “Calcium sulfate beads” or “antibiotic beads” or “Stimulan” AND “Bone infection” or “Osteomyelitis” or “Debridement” AND “Tibia” or “Femur”. Risk of bias was assessed using the Risk of Bias in Non-randomised Studies of interventions (ROBINS-i) tool, and quality assessed via the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) criteria. Results. Out of 105 relevant papers, 11 met the inclusion criteria for data extraction. Total infection recurrence rate was 6.8% (range 3.2 – 11.9%, n = 295), which was significantly lower (p < 0.001) than that of polymethylmethacrylate (PMMA; 19.6%, n = 163). Complication rates varied. The main issue regarding AICS use was wound drainage (7.9 – 33.3%), which was considerably higher in studies involving treatment of the tibia only. Studies using PMMA did not experience this issue, but there were a few incidences of superficial pin tract infection following surgery. Conclusions. AICS was consistently effective at infection eradication, despite variation in causative organism and location of bead placement. Additionally, PMMA has many inconvenient properties. AICS is therefore an attractive alternative as an adjunct in treatment of infected tibia and femur. Wound drainage rate varied and was higher in studies regarding tibial cases alone