Scapholunate instability is the most common cause of carpal instability. When this instability is left untreated, the mechanical relationship between the carpal bones is permanently disrupted, resulting in progressive degenerative changes in the radiocarpal and midcarpal joints. Different tenodesis methods are used in the treatment of acute or early chronic reducible scapholunate instability, where arthritis has not developed yet and the scapholunate ligament cannot be repaired. Although it has been reported that pain is reduced in the early follow up in clinical studies with these methods, radiological results differ between studies. The deterioration of these radiological parameters is associated with wrist osteoarthritis as previously stated. Therefore, more studies are needed to determine the tenodesis method that will improve the wrist biomechanics better and will last longer. In our study, two new tenodesis methods, spiral antipronation tenodesis, and anatomic front and back reconstruction (ANAFAB) were radiologically compared with triple ligament tenodesis (TLT), in the cadaver wrists. The study was carried out on a total of 16 fresh frozen cadaver wrists. Samples were randomly allocated to the groups treated with 3 different scapholunate instability treatment methods. These are TLT (n: 6), spiral antipronation tenodesis (n: 5) and ANAFAB tenodesis (n: 5) groups. In all samples SLIL, DCSS, STT, DIC, RSC and LRL ligaments were cut in the same way to create scapholunate instability. Wrist CT scans were taken on the samples in 4 different states, in intact, after the ligaments were cut, after the reconstruction and after the movement cycle. In all of these 4 states, wrist CTs were taken in 6 different wrist positions. For every state and every position through tomography images; Scapholunate (SL) distance, Scapholunate (SL) angle, Radioscaphoid (RS) angle, Radiolunate (RL) angle, Capitolunate (CL) angle, Dorsal scaphoid translation (Dt) measurements were made.Introduction and Objective
Materials and Methods
Optimal acetabular component position in Total Hip Arthroplasty is vital for avoiding complications such as dislocation, impingement, abductor muscle strength and range of motion. Transverse acetabular ligament (TAL) and posterior labrum have been shown to be a reliable landmark to guide optimum acetabular cup position. There have been reports of iliopsoas impingement caused by both cemented and uncemented acetabular components. Acetabular component mal-positioning and oversizing of acetabular component are associated with iliopsoas impingement. The Psoas fossa (PF) is not a well-regarded landmark to help with Acetabular Component positioning. Our aim was to assess the relationship of the TAL and PF in relation to Acetabular Component positioning. A total of 12 cadavers were implanted with the an uncemented acetabular component, their position was initially aligned to TAL. Following optimal seating of the acetabular component the distance of the rim of the shell from the PF was noted. The Acetabular component was then repositioned inside the PF to prevent exposure of the rim of the Acetabular component. This study was performed at Smith & Nephew wet lab in Watford.Abstract
Background
Methods
To address the current challenge of anterior cruciate ligament (ACL) reconstruction, this study is the first to fabricate a braided collagen rope (BCR) which mimics native hamstring for ACL reconstruction. The study aims to evaluate the biological and biomechanical properties of BCR both in vivo and vitro. Rabbit ACL reconstruction model using collagen rope and autograft (hamstring tendon) was conducted. The histological and biomechanical evaluations were conducted at 6-, 12-, 18, 26-week post-operation. In vitro study included cell morphology analysis, cell function evaluation and RNA sequencing of the tenocytes cultured on BCR. A
Proximal humeral shaft fractures are commonly treated with long straight locking plates endangering the radial nerve distally. The aim of this study was to investigate the biomechanical competence in a human cadaveric bone model of 90°-helical PHILOS plates versus conventional straight PHILOS plates in proximal third comminuted humeral shaft fractures. Eight pairs of humeral cadaveric humeri were instrumented using either a long 90°-helical plate (group1) or a straight long PHILOS plate (group2). An unstable proximal humeral shaft fracture was simulated by means of an osteotomy maintaining a gap of 5cm. All specimens were tested under quasi-static loading in axial compression, internal and external rotation as well as bending in 4 directions. Subsequently, progressively increasing internal rotational loading until failure was applied and interfragmentary movements were monitored by means of optical motion tracking. Flexion/extension deformation (°) in group1 was (2.00±1.77) and (0.88±1.12) in group2, p=0.003. Varus/valgus deformation (°) was (6.14±1.58) in group1 and (6.16±0.73) in group2, p=0.976. Shear (mm) and displacement (°) under torsional load were (1.40±0.63 and 8.96±0.46) in group1 and (1.12±0.61 and 9.02±0.48) in group2, p≥0.390. However, during cyclic testing shear and torsional displacements and torsion were both significantly higher in group 1, p≤0.038. Cycles to catastrophic failure were (9960±1967) in group1 and (9234±1566) in group2, p=0.24. Although 90°-helical plating was associated with improved resistance against varus/valgus deformation, it demonstrated lower resistance to flexion/extension and internal rotation as well as higher flexion/extension, torsional and shear movements compared to straight plates. From a biomechanical perspective, 90°-helical plates performed inferior compared to straight plates and alternative helical plate designs with lower twist should be investigated in future paired
An international Consensus Group has by a Delphi approach identified the topic of host factors affecting pin site infection to be one of the top 10 priorities in external fixator management. The aim of this study was to report the frequency of studies reporting on specific host factors as a significant association with pin site infection. Host factors to be assessed was: age, smoking, BMI and any comorbidity, diabetes, in particular. The intention was an ethological review, data was extracted if feasible, however no meta-analysis was performed. A systematic literature search was performed according to the PRISMA-guidelines. The protocol was registered before data extraction in PROSPERO. The search string was based on the PICO criterias. A logic grid with key concept and index terms was made. A search string was built assisted by a librarian. The literature search was executed in three electronic bibliographic databases, including Embase MEDLINE (1111 hits) and CINAHL (2066 hits) via Ovid and Cochrane Library CENTRAL (387 hits). Inclusion criteria: external fixation, >1 pin site infection, host factor of interest, peer-reviewed journal. Exclusion criteria: Not written in English, German, Danish, Swedish, or Norwegian, animal or
To create a comprehensive, user-friendly, database that facilitates selection of optimized animal models for fracture research. Preclinical testing using research animal models can expedite effective and safe interventions for clinical fracture patients but ethical considerations (e.g., adherence to 3R humane principles) and failure to meet critical review (e.g., clinical translation, reproducibility) currently complicate the model selection process. English language publications (1980-2021) were derived from PubMed® using the search-term ‘bone and fracture and animal’. Clinical cases, reviews, and
Abstract. Objective. A common orthopaedic pain found in a wide spectrum of individuals, from young and active to the elderly is anterior knee pain (AKP). It is a multifactorial disorder which is thought to occur through muscular imbalance, overuse, trauma, and structural malalignment. Over time, this can result in cartilage damage and subsequent chondral lesions. Whilst the current gold standard for chondral lesion detection is MRI, it is not a highly sensitive tool, with around 20% of lesions thought to be mis-diagnosed by MRI. Single-photon emission computerised tomography with conventional computer tomography (SPECT/CT) is an emerging technology, which may hold clinical value for the detection of chondral lesions. SPECT/CT may provide valuable diagnostic information for AKP patients who demonstrate absence of structural change on other imaging modalities. This review systematically assessed the value of SPECT/CT as an imaging modality for knee pain, and its ability to diagnose chondral lesions for patients who present with knee pain. Methods. Using PRISMA guidelines, a systematic search was carried out in PubMed, Science Direct, and Web of Knowledge, CINAHL, AMED, Ovid Emcare and Embase. Inclusion criteria consisted of any English language article focusing on the diagnostic value of SPECT/CT for knee chondral lesions and knee pain. Furthermore, animal or
Abstract. Objectives. A damaged vertebral body can exhibit accelerated ‘creep’ under constant load, leading to progressive vertebral deformity. However, the risk of this happening is not easy to predict in clinical practice. The present
Understanding the long-term effects of total knee arthroplasty (TKA) on joint kinematics is vital to assess the success of the implant design and surgical procedure. However, while in vitro
Abstract. Objectives. Unicompartmental (UKA) and bicompartmental (BCA) knee arthroplasty are associated with improved functional outcomes compared to Total Knee Arthroplasty (TKA) in suitable patients, although the reason is poorly understood. The aim of this study was to measure how the different arthroplasties affect knee extensor function. Methods. Extensor function was measured for sixteen cadaveric knees and then re-tested following the different arthroplasties. Eight knees underwent medial UKA then BCA, then posterior-cruciate retaining TKA, and eight underwent the lateral equivalents then TKA. Extensor efficiency was calculated for ranges of knee flexion associated with common activities of daily living. Data were analyzed with repeated measures analysis of variance (α=0.05). Results. Compared to native, no differences were detected in either extensor moment or efficiency following UKA. Conversion to BCA resulted in a small drop in extensor moment between 70-90° flexion (p<0.05), but when examined in the context of daily activity ranges of flexion, extensor efficiency was largely unaffected. Following TKA, large decreases in extensor moment were measured at low knee flexion angles (p<0.05), resulting in 8–43% reduction in extensor efficiency for daily activity ranges. Conclusion. This
Abstract. Objectives. Hip joint laxity after total hip arthroplasty (THA) has been considered to cause microseparation and lead to complications, including wear and dislocation. In the native hip, the hip capsular ligaments may tighten at the limits of range of hip motion and provide a passive stabilising force preventing edge loading and reduce the risk of dislocation. Previous attempts to characterise mechanical properties of hip capsular ligaments have been largely variable and there are no
Abstract. Objectives. Clavicle fractures are common, yet debate exists regarding which patients would benefit from conservative versus operative management. Traditionally shortening greater than 2cm has been accepted as an indicator for surgery. However, clavicle length varies between individuals. In a
It is common belief that consolidated intramedullary nailed trochanteric femur fractures can result in secondary midshaft or supracondylar fractures, involving the distal screws, when short or long nails are used, respectively. In addition, limited data exists in the literature to indicate when short or long nails should be selected for treatment. The aim of this biomechanical
Introduction and Objective. After anterior cruciate ligament reconstruction one of the risk factors for graft (re-)rupture is an increased posterior tibial slope (PTS). The current treatment for PTS is a high tibial osteotomy (HTO). This is a free-hand method, with 1 degree of tibial slope correction considered to be equal to 1 or even 1.67 mm of the anterior wedge resection. Error rates in the frontal plane reported in literature vary from 1 – 8.6 degrees, and in the sagittal plane outcomes in a range of 2 – 8 degrees are reported when planned on PTSs of 3 – 5 degrees. Therefore, the free-hand method is considered to have limited accuracy. It is expected that HTO becomes more accurate with patient specific saw guides (PSGs), with an accuracy margin reported in literature of 2 degrees. This proof of concept porcine
The treatment of scapholunate (SL) ligament injuries is addressed by surgical procedures to stabilize the carpal joint. Open techniques include bone-ligament-bone transfers, tenodesis, partial fusions and carpectomies. Innovative procedures using wrist arthroscopy, offer minimally invasive fixation without full exposure of carpal bones; however, the success of the technique and its impact on the reduction on the range of carpal movement is as yet not well known. In this work, the performance of Corella tenodesis technique to repair the SL ligament is evaluated for a wrist type II by numerical methods. Human wrist can be classified based on the lunate morphology: type I for lunate that articulates with radius, scaphoid, capitate and triquetrum, and type II which has an extra surface to articulate with the hamate. A finite element model was constructed from CT-scan images, the model includes cortical and trabecular bones, articular cartilage and ligaments. Three scenarios were simulated representing healthy wrist, SL ligament sectioning and the Corella technique. The performance of the technique was assessed by measure the SL gap in dorsal and volar side as well as the SL angle to be compared to
Repair of tendon injuries aims to restore length, mechanical strength and function. We hypothesise that Demineralised Cortical Bone (DCB) present in biological tendon environment will result in remodelling of the DCB into ligament tissue. A
Background. Ankle fractures are often associated with ligamentous injuries of the distal tibiofibular syndesmosis, the deltoid ligament and are predictive of ankle instability, early joint degeneration and long-term ankle dysfunction. Detection of ligamentous injuries and the need for treatment remain subject of ongoing debate. In the classic article of Boden it was made clear that injuries of the syndesmotic ligaments were of no importance in the absence of a deltoid ligament rupture. Even in the presence of a deltoid ligament rupture, the interosseous membrane withstood lateralization of the fibula in fractures up to 4.5mm above the ankle joint. Generally, syndesmotic ligamentous injuries are treated operatively by temporary fixation performed with positioning screws. But do syndesmotic injuries need to be treated operatively at all?. Methods. The purpose of this biomechanical
Background. Despite arthroscopy being the gold standard for long head of biceps pathology, the literature is seemingly lacking in any critical appraisal or validation to support its use. The aim of this study was to evaluate its appropriateness as a benchmark for diagnosis. The objectives were to evaluate whether the length of the tendon examined at arthroscopy allows visualisation of areas of predilection of pathology and also to determine the rates of missed diagnoses when compared to an open approach. Methods. A systematic review of cadaveric and clinical studies was performed. The search strategy was applied to Medline, PubMed and Google Scholar databases. All relevant articles were included. Critical appraisal of clinical studies was performed using a validated quality assessment scale. Results. Six articles were identified for inclusion in the review. This included both clinical and
Anatomical atlases document safe corridors for placement of wires when using fine-wire circular external fixation. The furthest posterolateral corridor described in the distal tibia is through the fibula. This limits the crossing angle and stability of the frame. In this paper we describe a new, safe Retro-Fibular Wire corridor, which provides greater crossing angles and increased stability. In a
Long-term regeneration of cartilage defects treated with tissue engineering constructs often fails because of insufficient integration with the host tissue. We hypothesize that construct integration will be improved when implants actively interact with and integrate into the subchondral bone. Growth and Differentiation Factor 5 (GDF-5) is known to support maturation of chondrocytes and to enhance chondrogenic differentiation and hypertrophy of mesenchymal stromal cells (MSC). Therefore, we investigated whether GDF-5 is capable to stimulate endochondral ossification of MSC in vitro and in vivo and would, thus, be a promising candidate for augmenting fibrin glue in order to support integration of tissue engineering constructs into the subchondral bone plate. To evaluate the adhesive strength of fibrin glue versus BioGlue. ®. , a commercially available glue used in vascular surgery, an ex vivo