Advertisement for orthosearch.org.uk
Results 1 - 20 of 62
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_12 | Pages 22 - 22
1 Mar 2013
Jordan C Quaye M Madi K Hsu Y Tong J Cossey A
Full Access

The treatment of acute full thickness chondral damage within the knee is a surgical challenge. Frequently used surgical techniques include chondroplasty, micro-fracture and chondrocyte implantation. These procedures give unpredictable functional outcomes and if the formation of neocartilage is achieved it is predominantly composed of type 1 collagen. The TruFit osteochondral plug was designed to provide a scaffold for cell proliferation into full thickness chondral defects. It is a composite polymer composed of polylactide co-glycolide, calcium sulphate and poly-glycolide fibres. It is composed of 2 layers, one with a similar trabecular network to cancellous bone and a superficial layer designed to simulate articular lining. The TruFit bone plug was analysed using micro-computed tomography. Its morphology characteristics, granulometry, mechanical performance and image guided failure were tested as well as numerical modelling to assess the permeability of TruFit. Morphological parameters of the TruFit bone plug compared favourably with those of human tissue. Under load the scaffold exhibited shear bands throughout the composite leading to a failure mechanism similar to cancellous bone. Stress relaxation rates of the scaffolds were greatly decreased under wet conditions, likely due to plasticisation of the scaffold by water. The biomechanical properties of the TruFit bone plugs are a cause for concern. The Scaffolds mechanical performance under load rapidly deteriorates in wet conditions at body temperature (the natural knee environment). This early failure will lead to defects in the articular surface where the plug has been inserted. Clinical data is sparse. This study correlates with work performed by Dockery et al & Spalding et al. These clinical studies have shown that the TruFit implant shows no evidence of bone ingrowth or osteoconductivity. It provides no subchondral support to neocartilage or tissue that was stimulated to form around the defects and surgical sites


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 93 - 93
1 Mar 2006
Wiethoff RS Dargel J Schneider T Koebke J
Full Access

Press-fit fixation technique in anterior cruciate ligament (ACL) reconstruction has recently gained popularity. The objective of this study was to evaluate the initial fixation strength of human patellar tendon-bone (PTB) grafts with respect to bone-plug length and loading angle by using a femoral press-fit fixation technique. Fourty-eight human PTB-grafts were obtained from 24 fresh frozen cadavers (mean age 72 years). The specimens were randomly assigned to two experimental groups: One with a 15 mm (n=24) and a second with a 25 mm patellar bone plug (n=24). The grafts were implanted to porcine femora in a press-fit fixation technique. Ultimate failure loads were measured at 10 mm/s at varying loading angles of 0, 30 and 60. Biomechanical testing showed a significant difference of ultimate failure load comparing 15 mm (mean 236 N) to 25 mm (mean 333 N) bone plugs (p=0.015). In both groups, the fixation strength increased with rising loading angles. While axial graft loading exclusively caused plug dislocation, the predominant mode of failure was tendon rupture at 60 loading angle. It is concluded that bone plug length and loading angle significantly influence the primary stability of PTB press-fit fixation in ACL reconstruction. Based on these findings, we recommend the use of patellar bone plugs with a minimum of 25 mm in length. If graft harvesting occasionally generates a patellar bone plug measuring 15 mm, restrictive postoperative rehabilitation should be advised


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 67 - 67
1 May 2017
Bhattacharjee A McCarthy H Tins B Kuiper J Roberts S Richarson J
Full Access

Background

Structural and functional outcome of bone graft with first or second generation autologous chondrocyte implantation (ACI) in osteochondral defects has not been reported.

Methods

Seventeen patients (mean age of 27±7 years, range 17–40), twelve with osteochondritis dissecans (OD) (ICRS Grade 3 and 4) and five with isolated osteochondral defect (OCD) (ICRS Grade 4) were treated with a combined implantation of a unicortical autologous bone graft with ACI (the Osplug technique). Functional outcome was assessed with Lysholm scores. The repair site was evaluated with the Oswestry Arthroscopy Score (OAS), MOCART score and ICRS II histology score. Formation of subchondral lamina and lateral integration of the bone grafts were evaluated from MRI scans.


Bone & Joint Research
Vol. 10, Issue 8 | Pages 467 - 473
2 Aug 2021
Rodríguez-Collell JR Mifsut D Ruiz-Sauri A Rodríguez-Pino L González-Soler EM Valverde-Navarro AA

Aims

The main objective of this study is to analyze the penetration of bone cement in four different full cementation techniques of the tibial tray.

Methods

In order to determine the best tibial tray cementation technique, we applied cement to 40 cryopreserved donor tibiae by four different techniques: 1) double-layer cementation of the tibial component and tibial bone with bone restrictor; 2) metallic cementation of the tibial component without bone restrictor; 3) bone cementation of the tibia with bone restrictor; and 4) superficial bone cementation of the tibia and metallic keel cementation of the tibial component without bone restrictor. We performed CT exams of all 40 subjects, and measured cement layer thickness at both levels of the resected surface of the epiphysis and the endomedular metaphyseal level.


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 324 - 328
1 Mar 2015
Boddu CK Arif SK Hussain MM Sankaranarayanan S Hameed S Sujir PR

Graft-tunnel mismatch of the bone-patellar tendon-bone (BPTB) graft is a major concern during anatomical anterior cruciate ligament (ACL) reconstruction if the femoral tunnel is positioned using a far medial portal technique, as the femoral tunnel tends to be shorter compared with that positioned using a transtibial portal technique. This study describes an accurate method of calculating the ideal length of bone plugs of a BPTB graft required to avoid graft–tunnel mismatch during anatomical ACL reconstruction using a far medial portal technique of femoral tunnel positioning. Based on data obtained intra-operatively from 60 anatomical ACL reconstruction procedures, we calculated the length of bone plugs required in the BPTB graft to avoid graft–tunnel mismatch. When this was prevented in all the 60 cases, we found that the mean length of femoral bone plug that remained in contact with the interference screw within the femoral tunnel was 14 mm (12 to 22) and the mean length of tibial bone plug that remained in contact with the interference screw within the tibial tunnel was 23 mm (18 to 28). These results were used to validate theoretical formulae developed to predict the required length of bone plugs in BPTB graft during anatomical ACL reconstruction using a far medial portal technique. Cite this article: Bone Joint J 2015;97-B:324–8


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 69 - 69
1 Dec 2022
Dwyer T Hoit G Sellan M Whelan DB Theodoropoulos JS Chahal J
Full Access

The purpose of this study was to determine the incidence of graft-tunnel mismatch (GTM) when performing anatomic anterior cruciate ligament reconstruction (ACLR) using bone-patella tendon-bone (BPTB) grafts and anteromedial portal drilling. Beginning in November 2018, 100 consecutive patients who underwent ACLR by two sports fellowship-trained, orthopedic surgeons using BPTB autograft and anteromedial portal drilling were prospectively identified. The BPTB graft dimensions and the femoral tunnel distance, tibial tunnel distance, intra-articular distance, and total distance were measured. Surgeons determined the depth and angle of tunnels based on the patella tendon graft length dimensions in each case. After passage of the graft, the distance from the distal graft tip to the tibial cortex aperture was measured. GTM was defined as the need for additional measures to obtain satisfactory tibial graft fixation (< 1 5e20 mm of bone fixation). The incidence of mismatch was 6/100 (6%). Five cases involved the graft being too long, with the tibial bone plug protruding excessively from the tibial tunneld4/5 had a patella tendon length ? 50 mm. Three cases were managed with femoral tunnel recession, and two were treated with a free bone plug technique. One patient with a patella tendon length of 35 mm had a graft that was too short, with the tibial bone plug recessed in the tibial tunnel. Of patients whose tibial tunnel distance was within 5 mm of the patella tendon length, only 1/46 (2%) patients had mismatch, whereas 5/54 (9%) of patients who had >5 mm difference had mismatch. The incidence of grafttunnel mismatch after anatomic ACLR using BTPB and anteromedial portal drilling in this study is 6%. To limit the occurrence of GTM where the graft is too long, surgeons should drill tibial tunnel distances within 5 mm of the patella tendon length


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_11 | Pages 36 - 36
1 Nov 2022
Patil V Rajan P Bartlett J Symons S
Full Access

Abstract. Aims. Growth disturbances after transphyseal paediatric ACL reconstruction have led to the development of physeal-sparing techniques. However, evidence in their favour remains weak. This study reviews the literature to identify factors associated with growth disturbances in paediatric ACL reconstructions. Materials and Methods. Web of Science, Scopus and Pubmed were searched for case series studying paediatric ACL reconstructions. Titles, abstracts, text, results and references were examined for documentation of growth disturbances. Incidences of graft failures were also studied in these selected studies. Results. 78 studies with 2693 paediatric ACL reconstructions had 70 growth disturbances (2.6%). Of these 17 were varus, 26 valgus, 13 shortening, 14 lengthening and 5 patients had reduced tibial slope. Coronal plane deformities were seen more frequently with eccentric physeal arrest and lengthening with intraepiphyseal tunnelling. Shortening and reduced tibial slope were related to large central physeal arrest and anterior tibial physeal arrest respectively. Extraphyseal technique were least likely to have growth disturbances. 62 studies documented 166 graft failures in 2120 patients (7.83%). Conclusion. Growth disturbances resulting from transphyseal ACL reconstruction can be minimised by keeping drill size small, drilling steep and away from the physeal periphery. Insertion of bone plug, hardware or synthetic material through the drilled physis should be avoided. The evidence to accurately quantify such growth disturbances till skeletal maturity remains weak. Robust long term studies such as national ligament registries may standardise preoperative and postoperative outcome assessment to further characterise the risk of growth disturbance and re-ruptures


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_10 | Pages 24 - 24
1 Oct 2015
Rajkumar S Thiagaraj S Ghoz A Dodds R Tavares S
Full Access

In a prospective randomised controlled trial, 51 patients who did not receive a bone plug during total knee replacement surgery were compared to 49 patients who received a bone plug. The primary outcome measure was the need for allogenic blood transfusion requirement and the secondary outcome was the post-operative blood loss and decline in haemoglobin levels. The patients had autologous re-transfusion from their closed drainage system. The two groups did not differ in the demographics. The mean intra-operative blood loss was slightly more in the no plug group (difference of 41.25 millilitres), which was not statistically significant. There was no statistically significant difference in total post-operative blood loss and drop in haemoglobin levels. Only one patient had two units of allogenic blood transfusion in the no bone plug group while none required allogenic blood in the bone plug group. There was no statistically significant difference in the amount of blood re-transfused from the drain between the two groups. Our findings did not show any statistically significant difference in post-operative blood loss, decline in haemoglobin levels and the need for allogenic blood transfusion in total knee replacement surgery


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 51 - 51
1 Apr 2018
Avadi MS Meng L Anderson J Fisher J Wang M Jin Z Qiu Y Williams S
Full Access

INTRODUCTION. Avascular necrosis (AVN) of the femoral head (FH) initiates from biological disruptions in the bone and may progress to mechanical failure of the hip. Mechanical and structural properties of AVN bone have not been widely reported, however such understanding is important when designing therapies for AVN. Brown et al.[1] assessed mechanical properties of different regions of AVN FH bone and reported 52% reduction in yield strength and 72% reduction in elastic modulus of necrotic regions when compared to non-necrotic bone. This study aimed to characterise structural and mechanical properties of FH bone with AVN and understand the relationship between lesion volume and associated mechanical properties. METHODS. Twenty FH specimens from patients undergoing hip arthroplasty for AVN and six non-pathological cadaveric FH controls were collected. Samples were computed tomography scanned and images analysed for percentage lesion volume with respect to FH volume. Samples were further divided for structural and mechanical testing. The mechanical property group were further processed to remove 9mm cylindrical bone plugs from the load bearing and non-load-bearing regions of the FHs. FH and bone plug samples were tested in compression (1mm/min); elastic modulus and yield stress were calculated. RESULTS. Imaging. Individual lesion size within AVN FHs varied: multiple small lesions or small numbers of large lesions were present in all FHs. Mean lesion volume percentage for AVN FHs was significantly greater than control FHs (p30% total FH volume. Structural Properties: The mean elastic modulus for AVN FHs was 15% lower than that of control FHs and mean yield stress was 4% lower than that of control FHs, however this difference was not significant. Mechanical Properties. The mean elastic modulus and yield stress of bone plugs from the load-bearing regions of AVN FHs were significantly lower than those of control samples (79% and 77% respectively; p<0.05, Kruskal-Wallis), however, for non-load-bearing samples, mean elastic modulus and yield stress of AVN FHs were significantly higher than control samples (by 153% and 123% respectively; p<0.05, Kruskal-Wallis). DISCUSSION. Although mechanical properties of bone in load-bearing regions of AVN FHs were significantly less than those of control FHs, replicating previous findings by Brown et al. (1981, CORR. 156, 240-7), mechanical properties in the non-load bearing regions were increased. This may be due to adaptation of the non-load bearing region to support loads following AVN in normally load bearing regions, or due to the presence of denser sclerotic tissue. In this study, necrotic bone samples demonstrated smaller changes in mechanical properties in the load-bearing region with respect to those regions in the control samples than previously reported by Brown et al.. This may be due to differences in experimental methods (e.g. patient demographics, quality of control bone samples, loading rate, and location of samples) or due to the disease stage of the AVN FHs from which tissues were taken. In addition, this study has demonstrated that necrotic lesions are not consistent in quantity, size and location


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 47 - 47
1 Dec 2021
Kayode O Day G Wijayathunga N Mengoni M Wilcox R
Full Access

Abstract. Introduction. Osteoarthritis (OA) is one of the lead causes of pain and disability in adults. Bone marrow lesions (BMLs) are one feature of subchondral bone involvement in OA. MRI images suggest changes in tissue content and properties in the affected regions however, it is not known if this alters the mechanical behavior of the bone, which could in turn affect OA progression. The aim of this study was to characterize the mechanical properties of BMLs, using a combined experimental and computational approach. Methods. Six human cadaveric patellae from donors aged 56–76 were used in this study; all exhibited BML regions under MRI. Bone plugs were taken from non-BML (n = 6) and BML (n = 7) regions within the patellae, with guidance from the MRI. The plugs were imaged at 82µm resolution using micro computed tomography (µCT) and tested under uniaxial compression. Finite element (FE) models were created for each plug from the µCT scans and morphological properties such as bone volume fraction (BV/TV) were also determined. The relationship between bone volume fraction and apparent modulus was investigated for both sample groups. Results. The BV/TV range was similar for the BML and non-BML groups (0.25–0.46 and 0.18–0.44) From the experimental tests, a moderate positive correlation was found between BV/TV and apparent modulus in the no BML group (r= 0.57) while no correlation was found in the BML group (r = −0.02). From the FE results, a different relationship between BV/TV and element elastic modulus was found for the BML and non-BML groups. Conclusions. The results of this study show that in regions of bone containing BMLs, bone volume fraction does not predict overall apparent modulus and has different relationship to local modulus, suggesting the BML associated tissue structural changes affect mechanical behavior. Funders: EPSRC


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 457 - 457
1 Sep 2009
Green C Flavin R Fitzpatrick D Moran R
Full Access

Graft choices for revision anterior cruciate ligament (ACL) reconstruction and complex ligament reconstructions of the knee are controversial. The aim of our study was to analyze the biomechanical effect of harvesting bone plugs from both the distal and proximal poles of the patella, to simulate a simultaneous harvesting of a Bone – Patellar Tendon – Bone and Quadriceps Tendon – Bone grafts, in a transverse stress environment. Sixty Bovine Patellae were analysed. They were divided into 4 groups – based on the residual bone bridge (percentage of total length of patella) remaining after bone plug resection. 0 – 10%, 11 – 20%, 21 – 30% and > 30%. All patellae were tested in a modified 4 – point bending environment, to a maximum load of 10,000N, in a customized designed jig. This method simulates the axial bending stress on the patella during knee flexion. All dimensions of the patellae were recorded including Depth of patella at bone resection and wall thickness adjacent to plug resection site. All patellae with a 0% bone bridge fractured (Ultimate Tensile Strength/UTS) at a mean Tensile Force of 5863N (Range 3140 – 8730N). There was a subgroup of incomplete fractures – extra-articular fractures – which fractured at 6542N (Range 5085 – 9180N). The remaining specimens failed to fracture. Comparing the UTS and the patellar dimensions, using Weibull’s Statistical Analysis we demonstrated that less than 60% bone plug resection carried a very low probability of fracture. This study demonstrates the safe criteria for bone – tendon graft harvesting from both the proximal and distal poles of the patella. With regards to a normal human patella, a 40% bone – bridge is approximately a 20mm bone – bridge. We conclude that the simultaneous harvesting of Bone – Patellar Tendon – Bone and Quadriceps Tendon – bone grafts from a patella has no significant increase in the fracture risk of the patella


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 52 - 52
1 Mar 2005
Maury A Southgate C Kuiper J Graham N
Full Access

Modern cementation techniques in hip arthroplasty are enhanced by the use of a cement restrictor. Failure of cemented hip replacements is commonly caused by aseptic loosening. Cement plugs which occlude the medullary canal are widely used to increase cementation pressures. Many plug types with variable performance exist. Ideally, plug performance should be sufficient regardless of other factors. All plug designs are circular in cross section, yet the vast majority of human femora are of oval section, the average ellipticity for human femora being 1.3. This study aims to determine (I) the effect of cement viscosity, canal shape and canal size on plug performance and (II) which designs of cement restrictor are able to withstand cementation pressures, regardless of values of other potentially influential factors. Methods: Artificial femoral canals were drilled in oak blocks. Canals had diameters of 12 or 17.5 mm and oval or circular cross section. Four synthetic plug types (Hardinge, Exeter, Summit and OptiPlug.) and a bone plug (human allograft, Sulzer instrumentation) were tested. The effect of canal diameter, canal shape and low or regular cement viscosity was assessed. Results: Maximal pressures achieved varied significantly between plugs. (OptiPlug 448±66 kPa, Hardinge 142±66, Exeter 705±66, Amber Flex 475±72, Bone plug 502±97 kPa; p=0.002, all mean±SEM). Al plugs performed worse in canals of increased size and of elliptical canal cross section (12 mm 529±49, 18 mm 356±47; p=0.03), canal shapes (Round 631±45, Oval 254±51; p=0.004). Cement viscosity had no statistical effect. Discussion: Elliptical canal cross section and increased canal diameter adversely affects performance of all plug designs. Of the five tested, the Exeter and bone plugs performed best in all adverse circumstances. The Opti-Plug and AmberFlex, which are both resorbable, had an intermediate performance. The Hardinge plug performed worse. These factors should be considered when selecting plug design


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 124 - 124
1 Dec 2020
CETIN M SOYLEMEZ MS OZTURK BY MUTLU I KARAKUS O
Full Access

Bone-patellar tendon-bone autografts, hamstring autografts or allografts are widely used grafts for ACL revision surgeries. Also use of quadriceps autograft for both primary and revision ACL surgeries is in an increasing popularity due to its biomechanical superior properties and less donor site morbidity. However, although several fixation techniques and devices for quadriceps tendon graft fixation on femoral side have been reported, literature lacks about biomechanical studies comparing properties of these different fixation techniques and devices. We aimed to investigate whether there is a difference between the fixation techniques of quadriceps tendon graft by using different fixation techniques and devices on the femoral side in terms of stiffness and amount of slippage in the tunnel. Full-thickness central parts of quadriceps tendons from paired knees of twenty five calf knees were fixed through a 10mm x 25mm tunnel in twenty five paired sheep femurs. Quadriceps tendon patellar side with soft tissue ending fixed with four different fixation devices (adjustable suspensory system (group 1), absorbable interference screw (group 2), titanium interference screw (group 3) and adjustable suspensory system + absorbable interference screw (group 4)) and quadriceps tendon with a patellar bone plug fixed with a titanium interference screw (group 5) were tested in a servohydraulic materials testing machine. 10 samples were included in each group. After applying a preload of 10 N, a cyclic force was applied for 20 cycles from 10N to 110N at a 1 hertz frequency. Amount of slippage in the tunnel was calculated as the difference measured in millimeters between length at 10 N after 20 cycles and starting length at 10 N (Graph 1). To determine the stiffness, a single load-to-failure cycle was performed at a strain rate of 20 mm/min as the last step (Figure 1). Rupture of the graft was not seen in any of the samples. Median values of amount of slippage in the tunnel were 6,41mm, 5,99mm, 3,01mm, 4,83mm, and 3,94mm respectively. Median values of maximum load at failure were 464N, 160N, 350N, 350N and 389N respectively. Amount of slippage in the tunnel was highest in the group 1 and was lowest in the group 3 (p<0.001). Group 1 was found to be most resistant group against load-to-failure test and group 2 was the weakest (p<0.001). However inter-group analyses between group 3 and 5 revealed that, although group 3 had the least slippage in the tunnel, group 5 was better in terms of stiffness, but there was no statistically significant difference (p=0,124 and 0,119 respectively). There was a significant difference between group 2 and 3 in both amount of slippage in the tunnel and stiffness (p=0,001 and 0.028 respectively)(Table 1). Our study revealed that, although quadriceps graft with a bone plug fixed with metal interference screws is widely presumed to be a stable fixation technique, there was no significant difference in terms of stiffness when compared with quadriceps graft with soft tissue ending fixed with a metal interference screw. Although adjustable suspensory device group was the best in the terms of resistance against load-to-failure, it was the worst in terms of amount of slippage from the tunnel. Thus, if a suspensory device is to be used, it must be kept in mind that a strong 20 cycles of intra-operative tension force must be applied to prevent further slippage of the graft in the tunnel which can result in failure of reconstruction. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IV | Pages 135 - 135
1 Mar 2012
McDermott I Lie D Edwards A Bull A Amis A
Full Access

This paper reports a series of comparative tests in-vitro that examined how lateral meniscectomy and meniscal allografting affected tibio-femoral joint contact pressures. 8 Cadaver knees (age range 81 – 98 years) were loaded in axial compression in an Instron materials testing machine up to 700N for 10 seconds and pressure maps obtained from the lateral compartment using Fuji Prescale film inserted below the meniscus. This was repeated after meniscectomy, then after meniscal allografting with fixation by a bone plug for the insertional ligaments, plus peripheral sutures. Finally, the pressure when the allograft was secured by peripheral sutures alone was measured. Meniscectomy caused a significant increase in peak contact pressures (p=0.0002). Both of the reconstructive methods reduced the peak contact pressures significantly below that of the meniscectomised knee (p=0.0029 with bone block; p=0.0199 with sutures alone). A significant difference was not found between the peak contact pressures after the reconstructions and that of the intact knee (p=0.1721 with bone block; p=0.0910 with sutures alone). The peak pressures increased slightly when the allografts were converted from bone block to suture-only fixation (p=0.0349). The principal finding was that both of the meniscal allograft insertion techniques reduced the peak contact pressure significantly below that of the meniscectomised knee, so that it did not then differ significantly from the peak contact pressure in the intact knee. When the two fixation methods were compared, the loss of the bone plug attachment caused a small increase in peak pressure. This study suggests that meniscal allografting should have a chondroprotective effect and that there is a small advantage from adding bony fixation to suture fixation


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 321 - 321
1 Nov 2002
Thomas NP Kankate RK
Full Access

Chronic medial collateral ligament (MCL) instability is an unusual clinical problem. Due to the unsatisfactory results of advancement procedures or reconstruction using autologous techniques we have devised a new technique using a non-irradiated tendo achilles allograft construct. Three patients are presented who had symptomatic MCL insufficiency. The laxity was demonstrated clinically (all grade 3) and radiologically using valgus stress views. The tendo achilles was fashioned into a triangular composite graft consisting of a bone plug (30 x 10 mm) and the tendon. The bone plug was attached to the femur at the anatomical insertion of the MCL using an interference screw and the tendon on the tibia using a multiple suture anchor technique. The rehabilitation programme consisted of immediate mobilisation and the use of a brace for twelve weeks. At follow-up (average 12 months) all patients were asymptomatic, had a full range of movements, no increased clinical laxity and no increased radiological laxity to a valgus force at 25 degrees of flexion when compared to the other side. We conclude that this is an effective technique in the treatment of chronic symptomatic MCL laxity


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_III | Pages 281 - 282
1 Mar 2004
Mohan R Raja S Bryant M
Full Access

Aims: The aim of this study was to compare the efþcacy of plastic and bone block cement restrictor as a medullary plug in total hip replacement. Methods: In this pro- spective study all patients undergoing a primary charnley total hip replacement were randomised to receive either a Hardinge cement restrictor or a Bone block. The medullary plug was inserted to a constant distance. Postoperative standardised radiographs were assessed. The length of the distal mantle was compared between the two groups. Results: 119 hips with a bone block (BB) and 85 hips with a Hardinge plastic cement restrictor (CR) were analysed over a period of 4 years. Analysis of the data by the application of the Two-sample t Ð test, ANOVA and Mann Ð Whitney test revealed a statistically signiþcant difference between the two groups (p < 0.0001). 95% CI limits for BB (a) & CR (a)(t Ð test) = (−12.9, −6.6); 95% CI (Mann-Whitney test) = (−13.002, −8.001). Results show that the plastic cement restrictor migrates distally to a greater degree than the bone plug. Conclusion: Interdigitation of cement into the cancellous endosteal bed depends on intramedullary pressure. The depth of the cement mantle is a measure of the intramedullary pressure and the function of the cement restrictor. We conclude that the bone plug is better in primary hip replacements


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 22 - 22
1 Jan 2019
Fermor H Herbert A Jones G Fisher J Ingham E
Full Access

Decellularised extracellular matrix scaffolds show great promise for the regeneration of damaged musculoskeletal tissues (cartilage, ligament, meniscus), however, adequate fixation into the joint remains a challenge. Here, we assess the osseo-integration of decellularised porcine bone in a sheep model. This proof-of-concept study supports the overall objective to create composite decellularised tissue scaffolds with bony attachment sites to enable superior fixation and regeneration. Porcine trabecular bone plugs (6mm diameter, 10mm long) were decellularised using a novel bioprocess incorporating low-concentration sodium dodecyl sulphate with protease inhibitors. Decellularised bone scaffolds (n=6) and ovine allograft controls (n=6) were implanted into the condyle of skeletally mature sheep for 4 and 12 weeks. New bone growth was visualised by oxytetracycline fluorescence and standard resin semi-quantitative histopathology. Scaffolds were found to be fully decellularised and maintained the native microarchitecture. Following 4-week implantation in sheep, both scaffold and allograft appeared well integrated. The trabecular spaces of the scaffold were filled with a fibro-mesenchymal infiltrate, but some areas showed a marked focal lymphocytic response, associated with reduced bone deposition. A lesser lymphocytic response was observed in the allograft control. After 12-weeks the lymphocytic reaction was minimised in the scaffold and absent in allografts. The scaffold showed a higher density of new mineralized bone deposition compared to allograft. New marrow had formed in both the scaffold and allografts. Following the demonstration of osteointegration this bioprocess can now be transferred to develop decellularised composite musculoskeletal tissue scaffolds and decellularised bone scaffolds for clinical regeneration of musculoskeletal tissues


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 41 - 41
1 Jan 2019
Koria L Mengoni M Brockett C
Full Access

Osteoarthritis is a debilitating disease affecting over 1.7 million people in the UK annually. Total ankle replacements are an increasingly sought option for repairing a late stage arthritic ankle, but result in the removal of significant portions of bone regardless of tissue quality. Hence, the mapping of bone quality would allow the use of targeted treatments at earlier stages of the disease. This study aims to develop characterisation methodologies using porcine tissue to investigate the mechanical properties of subchondral bone in the ankle. N=11 talar bone plugs (6mm diameter) were extracted from porcine ankles and embedded into Delrin endcaps using a thin layer of PMMA cement. These were scanned under micro-CT (16 microns) and subjected to quasi-static uniaxial compression to determine apparent stiffness for each specimen. Specimen-specific continuum FE models were developed, with material properties derived from the greyscale value of the underlying image. A python-based least squares regression (Opti4Abq, N=6) was used to minimise the difference between experimental and model stiffness values, to determine the coefficient linking greyscale and mechanical properties. Apparent stiffness, elastic modulus and compressive strength were compared to BV/TV, which was derived using BoneJ (a bone image plugin for the NIH ImageJ). The results show positive correlations between BV/TV and compressive strength, stiffness and Young's modulus. Average BV/TV across all samples was 0.45. Average experimental and computational stiffness were 986N/mm and 891 N/mm respectively. A 21.8% RMS error was found using the validation set (N=5), which was of similar order to the calibration set. Some specimens saw issues with misalignment of the specimen faces and the loading platens, likely causing overestimation of mechanical properties. This study has developed methods that can be translated for use with human ankle bone and will lead to the development of an accurate means of mapping arthritic bone in the ankle


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_16 | Pages 12 - 12
1 Oct 2017
Bhattacharjee A McCarthy H Tins B Roberts S Kuiper J Harison P Richardson J
Full Access

The current study aims to ascertain the outcome of ACI with simultaneous transplantation of an autologous bone plug for the restoration of osteoarticular defects in the femoral condyle of the knee (‘Osplug’ technique). Seventeen patients (mean age of 27±7 years), twelve with Osteochondritis dissecans (OD) and five with an osteochondral defect (OCD) was treated with unicortical autologous bone graft combined with ACI (‘Osplug’ technique). Functional outcome was assessed with Lysholm scores obtained for 5 years post-operatively. The repair site was evaluated with the Oswestry Arthroscopy Score (OAS), MOCART MRI score and ICRS II histology score. The mean defect size was 4.5±2.6 SD cm² and mean depth was 11.3±5 SD mm. A significant improvement of Lysholm score from 45 (IQR 24, range 16–79) to 77 (IQR 28, range 41–100) at 1 year (p-value 0.001) and 70 (IQR 35, range 33–91) at 5 years (p-value 0.009). The mean OAS of the repair site was 6.2 (range 0–9) at a mean of 1.3 years. The mean MOCART score was 61 ± 22SD (range 20–85) at 2.6 ± 1.8SD years. Histology demonstrated generally good integration of the repair cartilage with the underlying bone. Poor lateral integration of the bone graft on MRI and low OAS were significantly associated with a poor outcome and failure. The Osplug technique shows significant improvement of functional outcome for up to 5 years. This is the first report describing the association of bone graft integration with functional outcome after such a procedure


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 66 - 66
1 Jan 2016
Camillieri G Di Salvatore M Mancò A
Full Access

Transverse pin femoral fixation of bone-patella tendon-bone (BPTB) in ACL reconstruction has been widely applied during the last decades. Aim of our study is to confront two different system of transverse femoral fixation for BPTB graft: Transfix BTB (Arthrex) and BioTransfix T3 (Arthrex). The main differences between these two system are the diameter (3.0 mm Transfix BTB and 3.5 mm BioTransfix T3), and section (Transfix BTB is cannulated). Surgical technique adopts the same transverse vectorial guide but different guide sleeves. 30 fresh-frozen porcine knees (mean age 2.2 years) were assigned to the two groups randomisedly. the patellar bone block and tendon were harvested using the same size in all specimens (10mm × 25 mm, 10 mm). Zwick-Roell z010 tension/compression device with bone clamps, was used for the study:. Cyclic test (1000 cycles, 0.5 Hz, 50–250 N/cycle, 100 cycles of preload). Final pull-out test (1 mm/s). Failure analysis. CT scan and densitometry. Any implant didn't fail during cyclic test. The elongation average was 1.85±0.63 for Transfix BTB and 1.69±0.87 for BioTransfix T3. Pull-out test showed very similar values in terms of Ultimate Strength Failure (USF), Stiffness at USF, and Stiffness:. The failure mode was bone plug fracture (12 for Transfix BTB and 13 for BioTransfix T3) and tendon failure (3 for Transfix BTB and 2 for BioTransfix T3). The post-test CT scan showed any failure of the fixation devices and the correct position inside the femoral half-tunnel. The mean bone density of porcine femora was comparable to young human femora (1.12±0.31 BMD). Both systems showed a similar behaviour in terms of USF, Stiffness, Cyclic load, method of failure and other biomechanical parameters. The reproducibility of surgical technique, the mechanical strength and endurance of the systems suggest two valid options for ACL reconstruction with BPTB even if in-vivo studies are necessary to confirm the animal ex-vivo biomechanical data