Advertisement for orthosearch.org.uk
Results 1 - 20 of 41
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 72 - 72
1 Nov 2018
Murphy CM
Full Access

Healthy bone metabolism is a tightly coupled dynamic process that relies on a balance between bone resorption (catabolism) by osteoclasts and bone formation (anabolism) by osteoblasts. Traditionally, tissue-engineering approaches for non-union fracture repair employ local anabolic therapeutic delivery strategies that target mesenchymal stem cells (MSCs) and osteoblasts to induce bone formation, however, the challenge of healing non-union defects depends on the cause of defect e.g. trauma or disease, and targeting bone formation alone is often not sufficient. Our research focuses on utilising both anabolic therapeutics, including recombinant human bone morphogenic protein (rhBMP) −2 and parathyroid hormone (PTH). (1–34). , and anti-catabolic bisphosphonates (BPs) to target bone metabolism. A major challenge with harnessing a combined dosing regimen is controlling the release of the individual therapeutics to target cells. We have developed a number of polymer-ceramic based biomaterial delivery systems, including injectable and implantable scaffolds, for the controlled release of rhBMP-2 and the BP zoledronic acid (ZA) and demonstrated their efficacy in vivo. A dual therapeutic load provided a synergistic enhancement of bone regeneration, demonstrating significantly increased bone formation and remodelling compared to anabolic therapies alone. Utilising hydroxyapatite as the ceramic phase in our scaffolds further increased bone formation, demonstrating the polymer-ceramic scaffolds to be osteoconductive in the absence of therapeutics. In addition, we have demonstrated the manipulation of bone metabolism through a specific dosing regimen of PTH. (1–34). , a therapeutic traditionally used as an anabolic, to induce bone remodelling and drive healing in BP loaded fractures. Our research to date has shown that optimising the delivery and regimen of anabolic and anti-catabolic therapeutics to control bone metabolism, augments the bone regenerative potential of these therapeutics in orthopaedic applications


Aims. This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. Methods. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload. Results. Utilizing an OVX rat model, we observed significant alterations in bone mass and osseointegration due to VIT administration in aged rats with iron overload. The observed effects were concomitant with reductions in bone metabolism, oxidative stress, and inflammation. To elucidate whether these effects are associated with osteoclast and osteoblast activity, we conducted in vitro experiments using MC3T3-E1 cells and RAW264.7 cells. Our findings indicate that iron accumulation suppressed the activity of MC3T3-E1 while enhancing RAW264.7 function. Furthermore, iron overload significantly decreased oxidative stress levels; however, these detrimental effects can be mitigated by VIT treatment. Conclusion. Collectively, our data provide compelling evidence that VIT has the potential to reverse the deleterious consequences of iron overload on osseointegration and bone mass during ageing. Cite this article: Bone Joint Res 2024;13(9):427–440


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 15 - 15
1 Apr 2018
Niedermair T Schirner S Seebröker R Straub R Grässel S
Full Access

Previously, we have demonstrated reduced biomechanical bone strength and matrix quality in Tachykinin (Tac)1-deficient mice lacking the sensory neuropeptide substance P (SP). A similar distortion of bone microarchitecture was described for α-calcitonin gene-related pepide (α-CGRP)-deficient mice. In previous studies we observed alterations in cell survival and differentiation capacity of bone cells isolated from wildtype mice when stimulated with SP and α-CGRP. We assume that changes in sensory neurotransmitter balance modulate bone cell metabolism thereby possibly contributing to inferior bone quality. In order to explore this hypothesis, we investigated and compared metabolic parameters in osteoblasts and osteoclasts isolated from SP- and α-CGRP-deficient mice and wildtype (WT) controls. Bone marrow-derived macrophages (BMMs) and osteoblast-like cells from female C57Bl/6J (WT-control), Tac1-deficient (Tac1-/−) and α-CGRP-deficient (α-CGRP-/−) mice were isolated and differentiated according to established protocols (Niedermair et al., 2014). Cell metabolism studies were performed for enzyme activity and cell survival. We observed reduced numbers of BMM from Tac1-/− and α-CGRP-/− mice after initial seeding compared to WT but no changes in viability. Osteoblast-like cells from Tac1-/− mice tend to migrate out faster from bone chips compared to WT-controls whereas migration of osteoblast-like cells from α-CGRP-/− mice was not affected. Osteoblasts and osteoclast/BMM cultures from WT mice endogenously synthesize and secrete SP as well as α-CGRP at a picomolar range. We found no changes regarding BMM or osteoblast proliferation from both, Tac1-/− and α-CGRP-/− mice when compared to WT-controls. Caspase 3/7-activity was reduced by trend in osteoclast/BMM cultures of α-CGRP-/− mice and significantly reduced in osteoclast/BMM cultures of Tac1-/− mice compared to WT-controls. We found significantly higher Caspase 3/7-activity in osteoblasts of Tac1-/− mice after 14 days of osteogenic culture conditions when compared to WT-controls whereas osteoblasts of α-CGRP-/− mice were unaffected. Cathepsin K enzyme activity was significantly reduced in osteoclast/BMM cultures of Tac1-/− and α-CGRP-/− mice compared to WT-controls. ALP activity of Tac1-/− osteoblasts was higher after 7 days and reduced after 21 days of osteogenic culture compared to WT-controls whereas ALP activity of osteoblasts of α-CGRP-/− mice was unchanged. Acccording to our in vitro observations, we suggest some reduction in bone resorption rate but concomitantly a reduction in bone formation rate in Tac1-/− mice compared to WT-controls resulting in a net bone loss in these mice as bone resorption is faster than bone formation. Furthermore, we assume that bone resorption rate is slightly reduced in α-CGRP-/− mice but bone formation rate seems to be unchanged. Therefore we hypothesize that additional conditions present in vivo might contribute to the inferior bone properties of α-CGRP-/− mice


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 70 - 70
1 Jan 2017
Peters M Brans B Wierts R Jutten L Weijers T Broos W Mottaghy F van Rhijn L Willems P
Full Access

The clinical success of posterior lumbar interbody fusion (PLIF) may be limited by pseudarthrosis, defined as the absence of solid fusion 1 year after surgery. Currently, CT is used to diagnose pseudarthrosis but is not able to be conclusive earlier than 1 year after surgery. No non-invasive technique is available to reliably assess bone graft incorporation in the early phase after PLIF. Positron Emission Tomography (PET) is a nuclear imaging modality that is able to identify changes at the cellular and molecular level in an early stage, well before manifestation of anatomical changes. PET/CT with the bone seeking tracer . 18. F-fluoride allows localization and quantification of bone metabolism. This study investigates whether an . 18. F-fluoride PET/CT scan early after PLIF is able to predict the fusion status at 1 year postoperative on CT. Twenty patients after PLIF were enrolled after written informed consent. At 6 weeks and at 1 year after PLIF, intravenous injection of . 18. F-fluoride was followed by a static scan at 60 minutes (Philips, Gemini TF PET/CT). Processing of images resulted in a bone metabolism parameter i.e. standardized uptake value (SUV). This parameter was determined for 3 regions of interest (ROIs): the intervertebral disc space (IDS) and the upper and lower endplate (UE and LE, respectively) of the operated segment. Interbody fusion was scored on a diagnostic CT scan made 1 year postoperatively and was defined as the amount of complete bony bridges between vertebrae, i.e 0, 1 or 2. Based on these scores, patients were divided in either the pseudarthrosis group (score 0) or the fusion group (scores 1 and 2). Differences between groups were analyzed using the independent samples Mann-Whitney U-test. Ten patients were classified as pseudarthrosis (0 bridges: n=10) and 10 patients as fused (1 bridge: n=5, 2 bridges: n=5). Patients in the pseudarthrosis group showed significantly lower bone metabolism values in the IDS on the 6 weeks PET/CT scan compared to patients in the fusion group (SUV. IDS,6w. 13.3±5.62 for pseudarthrosis and 22.6±6.42 for the fusion group, p=0.003), whereas values at the endplates were similar (SUV. UE,6w. 20.3±5.85 for pseudarthrosis and 21.6±4.24 for the fusion group, p=0.282). Furthermore, only in the pseudarthrosis group, bone metabolism in the IDS was significantly lower than at the endplates (p=0.006). In the fusion group, bone metabolism in the IDS and at the endplates was similar (p=0.470). The PET/CT scan at 1 year postoperative showed that in the pseudarthrosis group, bone metabolism of the IDS remained lower compared to the endplates (SUV. IDS,1y. 13.2±4.37, SUV. UE,1y. 16.4±5.33, p=0.004), while in the fusion group, IDS and endplate bone metabolism was similar (SUV. IDS,1y. 13.6±2.91, SUV. UE,1y. 14.4±3.14, p=0.397). This study shows that low bone metabolism values in the IDS of the operated segment as seen on . 18. F-fluoride PET/CT 6 weeks after PLIF, is related to development of pseudarthrosis 1 year postoperatively. These results suggest that . 18. F-fluoride PET/CT might be an early diagnostic tool to identify patients prone to develop pseudarthrosis after PLIF


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 16 - 16
2 Jan 2024
Lipreri M Pasquarelli A Scelfo D Baldini N Avnet S
Full Access

Osteoporosis is a progressive, chronic disease of bone metabolism, characterized by decreased bone mass and mineral density, predisposing individuals to an increased risk of fractures. The use of animal models, which is the gold standard for the screening of anti-osteoporosis drugs, raises numerous ethical concerns and is highly debated because the composition and structure of animal bones is very different from human bones. In addition, there is currently a poor translation of pre-clinical efficacy in animal models to human trials, meaning that there is a need for an alternative method of screening and evaluating new therapeutics for metabolic bone disorders, in vitro. The aim of this project is to develop a 3D Bone-On-A-Chip that summarizes the spatial orientation and mutual influences of the key cellular components of bone tissue, in a citrate and hydroxyapatite-enriched 3D matrix, acting as a 3D model of osteoporosis. To this purpose, a polydimethylsiloxane microfluidic device was developed by CAD modelling, stereolithography and replica molding. The device is composed by two layers: (i) a bottom layer for a 3D culture of osteocytes embedded in an osteomimetic collagen-enriched matrigel matrix with citrate-doped hydroxyapatite nanocrystals, and (ii) a upper layer for a 2D perfused co-culture of osteoblasts and osteoclasts seeded on a microporous PET membrane. Cell vitality was evaluated via live/dead assay. Bone deposition and bone resorption was analysed respectively with ALP, Alizarin RED and TRACP staining. Osteocytes dendrite expression was evaluated via immunofluorescence. Subsequently, the model was validated as drug screening platform inducing osteocytes apoptosis and administrating standard anti-osteoporotic drugs. This device has the potential to substitute or minimize animal models in pre-clinical studies of osteoporosis, contributing to pave the way for a more precise and punctual personalized treatment


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 95 - 95
1 Nov 2021
Timmen M Husmann N Wistube J Stange R
Full Access

Introduction and Objective. Klinefelter Syndrome (KS, karyotype 47,XXY) is the most frequent chromosomal aneuploidy in males, as well as the most common cause of infertility in men. Patients suffer from a lack of testosterone, i.e. hypergonadotropic hypogonadism provoking infertility, but KS men also show an increased predisposition to osteoporosis and a higher risk of bone fracture. In a mouse model for human KS, bone analysis of adult mice revealed a decrease in bone mass that could not be rescued by testosterone replacement, suggesting a gene dosage effect originating from the supernumerary X-chromosome on bone metabolism. Usually, X chromosome inactivation (XCI) compensates for the dosage imbalance of X-chromosomal genes between sexes. Some studies suggested that expression of genes that escape silencing of the supernumerary X-chromosome (e.g. androgen receptor) has an impact on sex differences, but may also cause pathological changes in males. As a promising new such candidate for a musculoskeletal escape gene, we identified the integral membrane protein (ITM) 2a, which is encoded on the X-chromosome and related to enchondral ossification. The aim of the project was to characterize systemic bone loss in the course of aging in our KS mouse model, and whether the supernumerary X-chromosome causes differences in expression of genes related to bone development. Materials and Methods. Bone structure of 24 month (=aged) old male wild type (WT) and 41, XXY mice (B6Ei.Lt-Y) were analysed by μCT. Afterwards bones were paraffin embedded and cut. In addition, tissue of brain, liver, kidney, lung and heart were also isolated and embedded for IHC staining. Using an anti-ITM2a antibody, expression and cellular localization of ITM2a was evaluated. IHC was also performed on musculoskeletal tissue of WT embryos (E18.5) and neonatal mice to determine possible age-related differences. Results. In 24 month old mice, the analysis of the lumbar vertebrae revealed a significantly lower BV/TV, trabecular bone volume and trabecular number in the XXY- group compared to WT. Trabecular thickness appeared lower but did not reach significance, with the cortical thickness being significantly higher in the XXY- group. High expression of ITM2a was detected in bone slices of both karyotypes in the chondrocytes inside the growth plate, as well as in megakaryocytes and leucocytes as well as endothelial cells of blood vessels inside the bone marrow. Osteocytes, along with erythrocytes and erythropoetic stem cells were negative for ITM2a. Other organs that showed ITM2a positive staining were kidney (blood vessels), heart (muscle) and brain (different structures). Liver and lung tissue were negative for ITM2a. No obvious difference in the intensity of the ITM2a-expression was observed between the WT and the XXY-karyotype. Analyses of embryotic bone tissue (WT) showed high expression of ITM2a in proliferating, hypertrophic and resting chondrocytes in the growth plates of tibia and femur. In comparison, the neonatal animals (WT) did not show any protein-expression in chondrocytes. Furthermore, within the metaphysis of both, embryotic and neonatal bones, endothelial cells and osteoblasts were ITM2a-positive. Further analyses of bones and tissues from young mice (4–6 month) are ongoing. Conclusions. Bone analyses revealed a significant reduction in trabecular bone mass along with fewer and thinner trabeculae in XXY mice compared to the WT, especially in the spine. ITM2a expression was visible in different cell types inside the bone, and in addition, different expression patterns at different stages of development (embryonic/neonatal) were observed. However, we have not found a significant difference in the quantity of ITM2a between tissues of XXY-karyotypes and WT. Further analyses of X-chromosomal encoded and therefore dysregulated modulators in XXY-karyotype mice and patients may reveal new sex chromosomal effector proteins in bone metabolism


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 13 - 13
4 Apr 2023
Meesters D Groven R Wijnands N Poeze M
Full Access

Nitric oxide is a free radical which in vivo is solely produced during the conversion of the amino acid arginine into citrulline by nitric oxide synthase enzymes. Recently, the importance of nitric oxide on inflammation and bone metabolism has been investigated. However, the knowledge regarding possible in vitro effects of arginine supplementation on chondrogenic differentiation is limited. ATDC5, a cell line which is derived from mouse teratocarcinoma cells and which is characterized as chondrogenic cell line, were proliferated in Dulbecco's Modified Eagle Medium (DMEM)/F12 and subsequently differentiated in proliferation medium supplemented with insulin, transferrin and sodium-selenite and where arginine was added in four different concentrations (0, 7.5, 15 and 30 mM). Samples were harvested after 7 or 10 days and were stored at −80 °C for subsequent RNA isolation for qPCR analysis. To determine chondrogenic differentiation, Alcian Blue staining was performed to stain the proteoglycan aggrecan, which is secreted by differentiated ATDC5 cells. All measurements were performed in triplo. Alcian Blue staining showed a qualitative increase of proteoglycan aggrecan secretion in differentiated ATDC5 cells after treatment with 7 and 15 mM arginine, with additional increased expression of ColII, ColX, Bmp4 and Bmp6. Treatment with 30 mM arginine inhibited chondrogenic differentiation and expression of aforementioned genes, however, Cox-2 and Vegfa gene expression were increased in these samples. Bmp7 was not significantly expressed in any experimental condition. The obtained results are suggestive for a dose-dependent effect of arginine supplementation on chondrogenic differentiation and associated gene expression, with 7.5 and 15 mM as most optimal concentrations and implications for apoptosis after incubation with 30 mM arginine. A future recommendation would be to investigate the effects of citrulline in a similar experiment, as this shows even more promising results to enhance the nitric oxide metabolism in sepsis and bone healing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 73 - 73
14 Nov 2024
Pérez GV Rey EG Quero LS Díaz NV
Full Access

Introduction. The identification of biological markers associated to implant failure in THA (total hip arthroplasty) patients remains a challenge in orthopedic surgery. In this search, previous studies have been mainly focused on typical mediators associated to bone metabolism and inflammation. Our group has evaluated changes in serum levels of insulin-like growth factor binding protein-1 (IGFBP-1), a protein which is not directly related to bone homeostasis, in patients undergoing THA. Method. We assessed IGFBP-1 levels in serum obtained from 131 patients (58% female, 42 % male; age: 68 ± 13 years) who underwent THA in the Orthopedic Surgery and Traumatology Department of our institution. In this cohort, 57% of patients had metal on polyethylene (MoP) as hip-bearing surface combination, 17 % had ceramic on ceramic (CoC) and 26% of them did not have any prosthesis. A test based on an enzyme-linked immunosorbent assay (ELISA) was used to determine IGFBP-1 levels in serum obtained from these patients. Result. Our results showed a significant increase in IGFBP- 1 levels in MoP group as compared to CoC and control groups, in which no differences in quantified levels were detected. Further analysis revealed no significant differences in IGFBP-1 between cemented and non-cemented MoP bearings. We performed a ROC curve to evaluate the accuracy of serum IGFBP-1 in discriminating MoP from the rest of patients (area under the curve: 0.7; 95% confidence interval: 0,6-0.8; p<0.05) and established a cut-off value of 10.2 ng/ml, according to the Youden´s Index. Logistic regression analysis showed that patients with MoP bearing surfaces had a higher risk of increased IGFBP- 1 levels in serum (p<0.05, Odds Ratio: 6.7, 95% Confidence Interval 3.1 to 14.8). Conclusion. IGFBP- 1 levels are significantly elevated in THA patients with MoP bearing surfaces, suggesting that this protein might be a reliable biomarker for the outcome of patients implanted with MoP


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 147 - 147
4 Apr 2023
Tohidnezhad M Kubo Y Gonzalez J Weiler M Pahlavani H Szymanski K Mirazaali M Pufe T Jahr H
Full Access

Nuclear factor erythroid 2–related factor 2 (Nrf2) is a crucial transcription factor to maintain cellular redox homeostasis, but is also affecting bone metabolism. As the association between Nrf2 and osteoporosis in elderly females is not fully elucidated, our aim was to shed light on the potential contribution of Nrf2 to the development of age-dependent osteoporosis using a mouse model. Female wild-type (WT, n=18) and Nrf2-knockout (KO, n=12) mice were sacrificed at different ages (12 weeks=young mature adult, and 90 weeks=old), morphological cortical and trabecular properties of femoral bone analyzed by micro-computed tomography (µCT), and compared to histochemistry. Mechanical properties were derived from quasi-static compression tests and digital image correlation (DIC) used to analyze full-field strain distribution. Bone resorbing cells and aromatase expression by osteocytes were evaluated immunohistochemically and empty osteocyte lacunae counted in cortical bone. Wilcoxon rank sum test was used for data comparison and differences considered statistically significant at p<0.05. When compared to old WT mice, old Nrf2-KO mice revealed a significantly reduced trabecular bone mineral density (BMD), cortical thickness (Ct.Th), cortical area (Ct.Ar), and cortical bone fraction (Ct.Ar/Tt.Ar). Surprisingly, these parameters were not different in skeletally mature young adult mice. Metaphyseal trabeculae were thin but present in all old WT mice, while no trabecular bone was detectable in 60% of old KO mice. Occurrence of empty osteocyte lacunae did not differ between both groups, but a significantly higher number of osteoclast-like cells and fewer aromatase-positive osteocytes were found in old KO mice. Furthermore, female Nrf2-KO mice showed an age-dependently reduced fracture resilience when compared to age-matched WT mice. Our results confirmed lower bone quantity and quality as well as an increased number of bone resorbing cells in old female Nrf2-KO mice. Additionally, aromatase expression in osteocytes of old Nrf2-KO mice was compromised, which may indicate a chronic lack of estrogen in bones of old Nrf2-deficient mice. Thus, chronic Nrf2 loss seems to contribute to age-dependent progression of female osteoporosis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 27 - 27
1 Nov 2021
Williamson A Bateman LE Maitre CL Kelly D Aberdein N
Full Access

Introduction and Objective. Global prevalence of obesity has risen almost three-fold between 1975 and 2016. Alongside the more well-known health implications of obesity such as cardiovascular disease, cancer and type II diabetes, is the effect of male obesity on testosterone depletion and hypogonadism. Hypogonadism is a well-known contributor to the acceleration of bone loss during aging, and obesity is the single biggest risk factor for testosterone deficiency in men. Understanding the micro and macro structural changes to bone in response to testosterone depletion in combination with a high fat ‘Western’ diet, will advance our understanding of the relationship between obesity and bone metabolism. This study investigated the impact of surgically induced testosterone depletion and subsequent testosterone treatment upon bone remodelling in mice fed a high fat diet. Materials and Methods. Male ApoE. −/−. mice were split into 3 groups at 7 weeks of age and fed a high fat diet: Sham surgery with placebo treatment, orchiectomy surgery with placebo treatment, and orchiectomy surgery with testosterone treatment. Surgeries were performed at 8 weeks of age, followed by fortnightly testosterone treatment via injection. Mice were sacrificed at 25 weeks of age. Tibiae were collected and scanned ex-vivo at 4.3μm on a SkyScan 1272 Micro-CT scanner (Bruker). Left tibiae were used for assessment of trabecular and cortical Volumes of Interest (VOIs) 0.2mm and 1.0mm respectively from the growth-plate bridge break. Tibiae were subsequently paraffin embedded and sectioned at 4μm prior to immunohistochemical evaluation of alkaline phosphatase. Results. Trabecular bone volume and mineral density were significantly reduced in orchiectomised mice compared to sham-operated controls; and these parameters were normalised to control levels in orchiectomised mice treated with testosterone. In contrast, Trabecular thickness was significantly higher in testosterone depleted animals. Cortical bone parameters and body weights did not significantly differ between groups. Levels of alkaline phosphatase did not differ significantly in cortical or trabecular osteoblasts between groups. Conclusions. Findings suggest that testosterone deficiency significantly reduces trabecular bone parameters, and testosterone therapy may be a useful intervention for the loss of bone mass in testosterone deficient males. These results indicate that testosterone therapy may be useful for the treatment of trabecular bone frailty in testosterone deficient males. Observed changes in trabecular bone do not appear to be due to decreased mineralisation caused by osteoblast alkaline phosphatase. Ongoing work includes histology analysis to elucidate the mechanisms underpinning the changes seen in the bones of testosterone deficient animals


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 38 - 38
1 Apr 2017
Ray S El Khassawna T Thormann U Sommer U Rhonke M Henns A Gelinsky M Hanke T Schnettler R Heiss C Alt V
Full Access

Objectives. Osteoporosis and osteomalacia lead to increased fracture risk. Previous studies documented dysregulated osteoblast and osteoclast activity, leading to a high-turnover phenotype, reduced bone mass and low bone mineral content. Osteocytes, the most abundant bone cell type, are involved in bone metabolism by enabling cell to cell interaction. Osteocytes presence and viability are crucial for bone tissue homeostasis and mechanical integrity. Osseo-integration and implant degradation are the main problems in developing biomaterials for systemically diseased bone. This study examines osteocyte localisation, morphology and on the implant surface and at the implant bone interface. Furthermore, the study investigates ECM proteins regulation correlated to osteocytes and mechanical competence in an ovariectomised rat model with a critical size metaphyseal defect. Methodology. After induction of osteoporosis, 60 female Sprague-Dawley rats were randomised into five groups: SrCPC (n=15), CPC (n=15), ScB30 (n=15), ScB30Sr20 (n=15) and empty defect (n=15). The left femur of all animals underwent a 4mm wedge-shaped metaphyseal osteotomy that was internally fixed with a T-shaped plate. The defect was then either filled with the above mentioned implants or left empty. After six weeks, histomorphometric analysis showed a statistically significant increase in bone formation at the tissue-implant interface in the SrCPC group compared to the other groups (p<0.01). Osteocyte morphology and networks were detected using silver and staining. ECM proteins were investigated through immunohistochemistry. Cellular populations were tested using enzyme histochemistry. Mineralisation was assessed using time of flight secondary ion mass spectrometry (TOF-SIMS). Statistical analysis was performed using Mann Whitney U test with Bonferroni correction. Results. In the SrCPC and compared to other test groups, osteocytes presence and morphology was enhanced. An increased osteocytic activity was also seen in ScB30Sr20 when compared to SCB30 alone. Local osteomalatic lesions characterised by the presence of excessive unmineralised osteoid as revealed by the VKVG staining in the intact bone was also seen. A regular pattern of osteocytes distribution reflecting a better bone maturation was also seen in case of the Sr substituted cements. Whereas in case of the ScB30 degenerated osteocytes with a comparatively irregular arrangement were seen. Nonetheless, ECM proteins indicating discrepant bone turnover (RANKL, OPG, BMP2, OCN; ASMA) were noticed to increase within these regions and were accompanied by the presence of apoptotic osteocytes. Interestingly, osteocytes were also localised near the blood vessels within the newly formed woven bone. On the other hand, osteocytes allocation at implant bone interface and on the implant surface were qualitatively better in the Sr substituted groups when compared to the other test groups. Furthermore, this correlates with healing enhancement and implant retention results obtained from the histomorphometry (BV/TV and Osteoclasts count). The first qualitative results of the sclerostin visualisation showed a lower expression in the Sr supplemented biomaterials compared to the Sr free ones. Conclusion. Osteoblasts, osteoclast and osteocytes are the key players to bone metabolism through production and mineralisation of ECM or resorption. The current study indicates the importance in therapeutically targeting osteocytes to regulate bone metabolism in osteoporotic/osteomalatic bone. Sr inhibits osteoclast activity which is important for implant degradation. However, in osteoporotic bone osteoclasts inhibition is crucial to enhance the healing. Our data suggest that osteocytes allocation at the bone implant interface and on the implant surface is aiding in implant degradation through osteocytes dependent resorption. Currently, discrepancies in mechanosensitivity, proliferation and fibrotic tissue formation are being investigated together with several anchorage proteins to quench further effects of osteocyte presence at the implant bone interface


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 26 - 26
1 Nov 2021
Amado I Hodgkinson T Murphy C Kennedy O
Full Access

Introduction and Objective. Traditionally, osteoarthritis (OA) has been associated mostly with degradation of cartilage only. More recently, it has been established that other joint tissues, in particular bone, are also centrally involved. However, the link between these two tissues remains unclear. This relationship is particularly evident in post-traumatic OA (PTOA), where bone marrow lesions (BMLs), as well as fluctuating levels of inflammation, are present long before cartilage degradation begins. The process of bone-cartilage crosstalk has been challenging to study due to its multi-tissue complexity. Thus, the use of explant model systems have been crucial in advancing our knowledge. Thus, we developed a novel patellar explant model, to study bone cartilage crosstalk, in particular related to subchondral bone damage, as an alternative to traditional femoral head explants or cylindrical core specimens. The commonly used osteochondral explant models are limited, for our application, since they involve bone damage during harvest. The specifics aim of this study was to validate this novel patellar explant model by using IL-1B to stimulate the inflammatory response and mechanical stimulation to determine the subsequent developments of PTOA. Materials and Methods. Lewis rats (n=48) were used to obtain patellar and femoral head explants which were harvested under an institutional ethical approval license. Explants were maintained in high glucose media (containing supplements), under sterile culture conditions. Initially, we characterised undamaged patellar explants and compared them with the commonly used femoral head. First, tissue viability was assessed using an assay of metabolic activity and cell damage. Second, we created chemical and mechanical damage in the form of IL-1B treatment, and mechanical stimulation, to replicate damage. Standard biochemical assays, histological assays and microstructural assays were used to evaluate responses. For chemical damage, explants were exposed to 10ng/ml of IL-1B for 24 hours at 0, 1, 3 and 7 days after harvesting. For mechanical damage, tissues were exposed to mechanical compression at 0.5 Hz, 10 % strain for 10 cycles, for 7 days. Contralateral patellae served as controls. In both groups, sGAG, ADAMTS4, and MMP-13 were measured as an assessment of representative cartilage responses while ALP, TRAP and CTSK were assessed as a representative of bone responses. In addition to this, histomorphometric, and immunohistochemical, evaluations of each explant system were also carried out. Results. Our results confirm that the patellar explant system is an excellent ex vivo model system to study bone-cartilage crosstalk, and one which does not induce any bone damage at the time of tissue harvest. We successfully established culture conditions to maintain viability in these explants for up to 28 days. Rat IL-1B treatment resulted in increased both proteoglycan content and bone metabolism markers after 7 days when compared with the controls. To confirm this finding, qualitative immunohistochemical staining showed chondrocytes increased expression of MMP13 after treatment with IL-1B. Furthermore, we observed that the levels of ADAMTS4 decreased in 48 hours after IL-1B exposure. Contrastingly IL-1B treatment had the opposite effect on CTSK markers when compared with the control. Mechanically compressed patellae showed a decrease in compressive moduli from day 3 to day 7, suggesting that tissue remodelling may have taken place as a compensatory mechanism in response to damage. In addition, MMP13 release decreased over 48 hours after mechanical compression, while TRAP levels were increased compared with the control. Conclusions. Thus, we successfully demonstrated that IL-1B and mechanical stimulation affects both bone and cartilage tissues independently in this system, which may have relevance in the understanding of bone-cartilage crosstalk after injury and how this is involved in PTOA development


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 10 - 10
1 Nov 2021
Jamieson S Tyson-Capper A Hyde P Kirby J
Full Access

Introduction and Objective. Total joint replacement (TJR) is indicated for patients with end-stage osteoarthritis (OA) where conservative treatment has failed. Approximately 1.3 million primary hip replacement surgeries have been recorded in the United Kingdom since 2003 and this number is set to rise due to an increase in obesity as well as an ageing population. Total hip replacement (THR) has a survival rate of 85% at 20 years; the most common reason for failure is aseptic loosening which often occurs secondary to osteolysis caused by immune-mediated inflammation responses to wear debris generated from the materials used in the THR implant. Therefore, by understanding the biological steps by which biomaterials cause immune-mediated reactions it should be possible to prevent them in the future thereby reducing the number of costly revision surgeries required. Materials and Methods. The human osteoblast-like cell line (MG-63) was seeded at a density of 100,000 cell per well of a 6-well plate and treated with and increasing doses (0.5, 5, and 50mm. 3. per cell) of cobalt-chromium (CoCr) particles generated on a six-station pin-on-plate wear generator or commercially available ceramic oxide nanopowders (Al. 2. O. 3. and ZrO. 2. ) for 24 hours. TNF-alpha was used as a positive control and untreated cells as a negative control. Cells were then analysed by transmission electron microscopy (TEM) to determine whether the osteoblasts were capable of phagocytosing these biomaterials. MG-63 cells were used in conjunction with trypan blue and the XTT Cell Proliferation II Kit to assess cytotoxicity of the biomaterials investigated. Cells supernatants were also collected and analysed by enzyme-linked immunosorbant assay (ELISA) to investigate changes in pro-inflammatory protein secretion. Protein extracted from lysed cells was used for western blotting analysis to investigate RANKL protein expression to determine changes to osteolytic activation. Lysed cells were also used for RNA extraction and subsequent cDNA synthesis for real-time quantitative polymerase chain reaction (RT-qPCR) in order to assess changes to pro-inflammatory gene expression. Results. There was no significant change to cellular viability or proliferation in the osteoblasts treated with CoCr, Al. 2. O. 3. or ZrO. 2. when compared to the untreated negative control. TEM images showed clear and distinct intracellular vesicles within the cell cytoplasm which contained CoCr, Al. 2. O. 3. and ZrO. 2. RANKL expression increased at 5 and 50mm. 3. per cell CoCr and 50mm. 3. per cell Al. 2. O. 3. and ZrO. 2. Pro-inflammatory protein secretion of CXCL10, IL-8, and IL-6 all significantly increased at 50mm. 3. per cell CoCr, Al. 2. O. 3. , and ZrO. 2. Similarly to the protein secretion, CXCL10, IL-8, and IL-6 gene expression was significantly upregulated at 50mm. 3. per cell CoCr, Al. 2. O. 3. , and ZrO. 2. Conclusions. Increased in vitro RANKL expression in response to CoCr, Al. 2. O. 3. , and ZrO. 2. may result in disruption of bone metabolism and lead to osteolysis which can contribute to aseptic loosening in vivo. Significant increases in IL-6 are particularly important because as well as being a pro-inflammatory cytokine, IL-6 is also secreted by osteoblasts in order to stimulate mature osteoclast formation to mediate bone breakdown. CXCL10 and IL-8 are chemotactic cytokines and increased secretion in response to implant biomaterials can contribute to ongoing pro-inflammatory responses through the recruitment of monocytes and neutrophils respectively. This is interesting as in vivo data demonstrates increased cellular infiltrate in patients experiencing responses to implant materials. Overall, these findings show clear immune activation as well as altered metabolism of MG-63 osteoblast cells in response to implant wear debris which is in agreement with in vivo clinical reports


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 88 - 88
1 Apr 2018
Jeuken R Roth A Peters M van Rietbergen B Emans P
Full Access

INTRODUCTION. Adequate osseointegration of knee resurfacing implants for the treatment of focal cartilage defects is an important prerequisite for good clinical outcomes. Inadequate initial fixation and sustained micromotion may lead to osteolysis and ultimately implant failure. PET/CT with the bone seeking tracer 18F-sodium fluoride (18F-NaF) allows for localisation and quantification of abnormalities in bone metabolism. 18F-NaF PET/CT has been shown to correlate with loosening of implants in the hip and spine. Here, we asses osseointegration of the knee resurfacing implants using micro-computed tomography (µCT) and correlate µCT parameters to 18F-NaF uptake on PET/CT scans taken 3 and 12 weeks after surgery. We hypothesize that 18F-NaF uptake at 12 weeks and its relative decrease between 3 and 12 weeks correlates with osseointegration at 12 weeks postoperatively. Polymer implants with Young”s moduli approximately equal to- and below the Young's modulus of bone, with- and without surface modification were used in this study next to a control metal implant. METHODS. Five different osteochondral implants were implanted bilaterally in critically-sized osteochondral defects in 16 goats. At 3 and 12 weeks postoperatively, a 10-minute static PET/CT-scan (Philips, Gemini TF PET/CT) was made 60 minutes after intravenous injection of 18F-NaF. Image processing resulted in an overall bone metabolism parameter, i.e. standardized uptake value (SUV). A cylindrical region of interest was drawn around each implant to obtain the maximum SUV (SUVmax). Bone quality parameters were quantified in a cylinder surrounding the implant using µCT after sacrifice as a measure for osseointegration. The in vivo 18F-NaF PET/CT uptake parameters were correlated to the bone quality parameters. RESULTS. Implant osseointegration strongly varied for the different implants. Some implant groups exhibited very poor osseointegration with clear signs of osteolysis, while titanium implants exhibited good osseointegration. A strong correlation was observed between bone quality parameters as determined using µCT and SUVmax at 12 weeks. The SUVmax of the implants with poor osseointegration remained high, while implants with good osseointegration showed a relative decrease in SUVmax between 3 and 12 weeks. CONCLUSION. This study suggests that the SUVmax of PET/CT 12 weeks after surgery correlates well for the quality of osseointegration assessed on µCT 12 weeks after surgery. De relative decrease of SUVmax between the given time points had a strong correlation with the degree of osseointegration. In this study, large differences in the quality of osseointegration were observed. The role of surface modification, elasticity and micromotion still remain to be determined as well as if 18F-NaF is sensitive enough to discriminate between smaller differences and what the optimum time point would be to predict the ultimate osseointegration


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 118 - 118
1 Mar 2021
Jeuken R Roth A Peters M Welting T Rhijn L Thies J Emans P
Full Access

Focal knee resurfacing implants (FKRIs) are typically intended to treat focal cartilage defects in middle-aged patients. All currently available FKRIs are (partly) composed of metal, which potentially leads to degeneration of the opposing articulating cartilage and hampers follow-up using magnetic resonance imaging (MRI). The purpose of this study was to investigate the in vivo osseointegration process of a novel non-degradable thermoplastic polycarbonate-urethane (TPU) osteochondral implant. Bi-layered implants measuring 6 mm in diameter, with a double-curvature to match the approximate curvature of the goat medial femoral condyle were fabricated. TPU implants were composed of an articulating Bionate® II 80A top layer, and a Bionate® 75D bottom layer (DSM Biomedical, Geleen, the Netherlands) which is intended to osseointegrate. A biphasic calcium phosphate coating formulation, optimized during a prior in vitro study, was applied to half of the TPU implants, while the other half was left uncoated. Bi-layered metal implants (articulating cobalt-chromium top layer and titanium bottom layer) were used as positive control implants. Eight implants per group were implanted bilaterally in the medial femoral condyle of the stifle joints in 12 Dutch milk goats. 18F-sodium fluoride (18F-NaF) positron emission tomography-computed tomography (PET-CT) scanning was performed at 3 and 12 weeks postoperatively, and the corrected maximum standard uptake values (cSUVmax) was calculated to assess the peri-implant bone metabolism. After sacrifice 12 weeks postoperatively, bone histomorphometric analysis was performed to assess the bone-to-implant contact area (BIC). Student's T-test was used in case of normal distribution and the Mann-Whitney-U-test was used in case of abnormal distribution for comparison of BIC and cSUVmax. The BIC value of 10.27 ± 4.50% (mean ± SD) for the BCP-coated TPU implants was significantly (P=0.03) higher than the 4.50 ± 2.61% for the uncoated TPU implants. The uncoated TPU implants scored significantly (P=0.04) lower than the BIC of 12.81 ± 7.55% for the metal implants, whereas there was no significant difference between BCP-coated TPU implants and the metal implants (P=0.68). There was a strong correlation between the cSUVmax values and the BIC values at 12 weeks (Pearson's R=0.74, P=0.001). The cSUVmax values significantly decreased between 3 and 12 weeks for the metal implants (p=0.04). BCP-coated TPU implants followed a similar trend but did not reach statistical significance (p=0.07). cSUVmax in the uncoated TPU implants did not show a significant difference between the time-points (p=0.31). Osseointegration of BCP-coated TPU implants did not significantly differ from metal implants. 18F-NaF PET-CT is a feasible modality to assess osseointegration patterns and showed a similar trend between the BCP-coated and metal implants. Hence, an implant fully composed of TPU may avoid the typical metal-related drawbacks of currently available FKRIs. Long-term follow-up studies are advocated to address the effects of the implant to the opposing cartilage, and are therefore warranted


Bone & Joint Research
Vol. 6, Issue 10 | Pages 572 - 576
1 Oct 2017
Wang W Huang S Hou W Liu Y Fan Q He A Wen Y Hao J Guo X Zhang F

Objectives. Several genome-wide association studies (GWAS) of bone mineral density (BMD) have successfully identified multiple susceptibility genes, yet isolated susceptibility genes are often difficult to interpret biologically. The aim of this study was to unravel the genetic background of BMD at pathway level, by integrating BMD GWAS data with genome-wide expression quantitative trait loci (eQTLs) and methylation quantitative trait loci (meQTLs) data. Method. We employed the GWAS datasets of BMD from the Genetic Factors for Osteoporosis Consortium (GEFOS), analysing patients’ BMD. The areas studied included 32 735 femoral necks, 28 498 lumbar spines, and 8143 forearms. Genome-wide eQTLs (containing 923 021 eQTLs) and meQTLs (containing 683 152 unique methylation sites with local meQTLs) data sets were collected from recently published studies. Gene scores were first calculated by summary data-based Mendelian randomisation (SMR) software and meQTL-aligned GWAS results. Gene set enrichment analysis (GSEA) was then applied to identify BMD-associated gene sets with a predefined significance level of 0.05. Results. We identified multiple gene sets associated with BMD in one or more regions, including relevant known biological gene sets such as the Reactome Circadian Clock (GSEA p-value = 1.0 × 10. -4. for LS and 2.7 × 10. -2. for femoral necks BMD in eQTLs-based GSEA) and insulin-like growth factor receptor binding (GSEA p-value = 5.0 × 10. -4. for femoral necks and 2.6 × 10. -2. for lumbar spines BMD in meQTLs-based GSEA). Conclusion. Our results provided novel clues for subsequent functional analysis of bone metabolism, and illustrated the benefit of integrating eQTLs and meQTLs data into pathway association analysis for genetic studies of complex human diseases. Cite this article: W. Wang, S. Huang, W. Hou, Y. Liu, Q. Fan, A. He, Y. Wen, J. Hao, X. Guo, F. Zhang. Integrative analysis of GWAS, eQTLs and meQTLs data suggests that multiple gene sets are associated with bone mineral density. Bone Joint Res 2017;6:572–576


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 26 - 26
1 Nov 2018
Oishi T Kobayashi N Inaba Y Kobayashi D Higashihira S Saito T
Full Access

The pathology of the posterior acetabular legion in femoroacetabular impingement (FAI) syndrome, so called “contre-coup region”, is still unclear. . 18. F-fluoride positron emission tomography (PET) is a functional imaging modality, which reflects the osteoblast activity. Recent technological advances in PET combined with computed tomography (CT) imaging allowed us to obtain detailed 3-dimensional (3D) morphological information. We evaluated the abnormal uptake of . 18. F-fluoride PET/CT on posterior acetabular lesion in FAI syndrome cases. We enrolled forty-one hips from 41 patients who were diagnosed as FAI syndrome and were performed . 18. F-fluoride PET/CT between October 2014 and October 2016. In each hip, the maximum standardized uptake value (SUV. max. ) on the posterior acetabular was measured. The cases were divided into 4 groups; cam-type (11 cases), pincer-type (7), combined-type (11), dysplastic developmental hip (DDH) with cam morphology (12). The average SUV. max. of the pincer-type was significantly smaller than that of the other 3 groups (p < .05). The percentage of the cases with SUV. max. ≥ 6 was 81.8% in cam-type, 28.6% in pincer-type, 90.9% in combined-type, 91.7% in DDH with cam morphology. Furthermore, the average degree of α angle of the cases of SUV. max. ≥ 6 was significantly higher than that of the cases of SUV. max. < 6 (p = .005). Although actual biomechanical mechanism in contre-coup region is still controversial, this result indicated that the cam morphology related to the posterior acetabular lesion with accelerated bone metabolism


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 16 - 16
1 Nov 2018
Chen Y Lian W Ko J Wang F
Full Access

Fatty marrow and bone loss are prominent pathologic features of osteoporosis. DNA hypermethylation shifts mesenchymal stem cells towards adipocytes impairing bone formation. Brown adipocytes produce growth factors advantageous to osteogenesis, whereas white adipocytes secrete pro-inflammatory cytokines deleterious to bone homeostasis. We assess DNA methylation inhibitor action to brown and white adipocyte formation in marrow fat of osteoporotic skeletons. Osteoporotic skeletons in mice were induced by glucocorticoid, ovariectomy or ageing. Marrow adipose volume and bone structure were quantified using OsO4 contrast-μCT imaging. Brown and white adipocytes were probed using immunostaining, RT-PCR and primary bone-marrow mesenchymal stem cell cultures. Abundant marrow fat and spare trabecular bone existed in osteoporotic skeletons. Osteoporosis increased expressions of general adipogenic markers PPARγ2 and FABP4 and white adipocyte markers TCF21 and HOXc9, whereas expressions of brown adipocyte markers PGC-1α and UCP-1 and osteogenic markers Runx2 and osteocalcin were significantly decreased. Number of UCP-1 immunostaining-positive brown adipocytes also reduced in osteoporotic bone. In vitro, DNA methylation inhibitor 5'-aza-deoxycystidine significantly increased brown adipocyte formation and osteogenic differentiation and mitigated dexamethasone-induced white adipocyte formation in mesenchymal stem cells. 5'-aza-deoxycystidine control of brown adipogenesis and white fat formation appeared to be regulated by increasing Wnt3a/β-catenin and reducing Dkk1. Disintegrated brown adipocyte and white fat cell differentiation contribute to osteoporosis pathogenesis. Maintaining DNA hypomethylation promotes Wnt signalling and brown adipocyte differentiation facilitating osteogenic differentiation. This study shed a new light to the contribution of brown adipocytic cells to bone metabolism during osteoporosis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_VIII | Pages 3 - 3
1 Mar 2012
Gangji V
Full Access

Introduction. Osteonecrosis (ON) is a bone disease characterized by death of osteocytes and loss of associated hematopoietic elements usually occurring as focal lesions in weight bearing joints such as the hip. The pathophysiology of the disease is still unclear and osteonecrosis can be viewed as both a vascular and a bone disease. The number of mesenchymal stem cells (precursors of osteoblastic cells) has been shown to be depressed in patients with osteonecrosis. Also, the proliferation rate of the osteoblastic cells in the proximal femur may be depressed. These findings raised the possibility that osteonecrosis might be a disease of bone cells or bone metabolism. On this basis, we started this study to evaluate bone metabolism status among patients with osteonecrosis. Methods. In a prospective study, we evaluated 110 patients with osteonecrosis at the time of the diagnosis for vitamin D, parathormone, osteocalcin, and c-telopeptide measurements. DEXA was performed in all patients as well. We excluded from this study patients with sickle cell anemia (n=5), Gaucher disease (n=1), on hemodialysis (n=14), and who were already treated for osteoporosis (n=8). Results. There were 20 women and 90 men (mean age 47 ± 11 years). Twenty percent of the patients had unilateral osteonecrosis of the femoral head, 61 % of the patients had bilateral osteonecrosis, and 20 % had multifocal disease. Risk factors were corticosteroid and alcohol abuse. Vitamin D deficiency (<15 ng/ml) was found in 60 % of the patients and vitamin D insufficiency (15 to 30 ng/ml) was found in 15% of the patients. Secondary hyperparathyroidism (>55pg/ml) was present in only 7 patients. Patients with alcohol abuse had significantly lower vitamin D concentration than the other patients: 11.9 ± 8.7 vs. 20.8 ± 9.2 ng/ml (p=0.005). Among 90 samples, 45 showed an osteocalcin level below the normal range (<14 ng/ml). Most of the patients had a normal level of C-telopeptide. Patients with corticosteroid-associated osteonecrosis had significantly lower osteocalcin levels than others osteonecrotic patients: 14.1 ± 5.3 vs 22.7 ± 13.0 ng/ml (p=0.015). Bone mineral density measurements were obtained for 60 patients and showed a T-score < -1.5 at the lumbar site and < 1.8 at the hip. Conclusion. Patients with osteonecrosis have a high prevalence of vitamin D deficiency without secondary hyperparathyroidism. They also display a low bone turnover confirmed by low osteocalcin levels and normal levels of C-telopeptide. Osteonecrosis is also associated with severe osteopenia


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 5 - 5
1 Apr 2018
Timmen M Stoermann S Saferding V Blüml S Stange R
Full Access

MicroRNA´s are regulatory sequences which influence the posttranscriptional synthesis of about 70% of protein encoding genes. In different studies, MicroRNA-146a (miR-146a) was associated with inflammatory and autoimmunological processes. In vitro it was shown, that miR-146a influences the bone metabolism by regulating differentiation of mesenchymal stem cells. The miR-146a deficient mouse starts to develop lymphoproliferative and myeloproliferative disease by 6–8 months of age. In this study, we investigate the influence of miR-146a deficiency on bone structure and stability dependent on age and gender. Material and Methods. Male and female mice of wild type (WT) and miR-146a deficient (KO) animals at the age of 2–3 and 5–7 month were analyzed Femur, Tibia and lumbar vertebra (LWK4) were dissected and used für structural analyses by microcomputer tomography (µCT). Parameters like bone volume/tissue volume, trabecular bone volume, trabecular thickness, number and separation as well as cortical thickness were determined. Biomechanical stability as load to failure testing was determined using torsional testing for the long bones and axial compression testing for the vertebra body. Statistical analysis was performed using Graph Pad Prism (Mann-Whitney-U-Test, significance: p<0.05). Results. Structural analyses of the bone structure in the long bones (femur, tibia) revealed a significant higher bone volume/tissue volume (BV/TV) and trabecular bone mass in the elder (5–7 month) miR-146a deficient female mice compared to the male group or wild type animals of either age. In the diaphysis of the femur a BV/TV of 21% was determined for the elder miR-146a deficient females compared to 9% BV/TV in the age matching WT group. These changes were due to an increase in trabecular thickness and trabecular number in this area. In contrast to that, the cortical thickness of all bones analyzed was lowered in the miR-146a deficient animals (male and female) compared to wild type. Biomechanical stability of long bones as well as the vertebra body of the older, female KO group was significantly lower compared to wild type bones. Femurs showed a maximal torque of 20Nmm compared to 34Nmm in the wild type group. The vertebra of the KO mice showed a maximal force at failure of 22N compared to 40N in the wild type group. Male groups and younger females revealed values comparable to wild type animals. Conclusion. The deficiency of miR-146a leads to an increase of trabecular bone in the long bones of female 5–7 month old mice, but to lowered biomechanical bone stability. If this is due to alterations in differentiation or proliferation of mesenchymal stem cells remains unclear and will be analyzed further. Additionally, gender relation of our observations points to the influence of female specific regulatory mechanisms like the involvement of estrogen receptor related mechanisms