Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 109 - 109
2 Jan 2024
Park KH
Full Access

Fractures and related complications are a common challenge in the field of skeletal tissue engineering. Vitamin D and calcium are the only broadly available medications for fracture healing, while zinc has been recognized as a nutritional supplement for healthy bones. Here, we aimed to use polaprezinc, an anti-ulcer drug and a chelate form of zinc and L-carnosine, as a supplement for fracture healing. Polaprezinc induced upregulation of osteogenesis-related genes and enhanced the osteogenic potential of human bone marrow-derived mesenchymal stem cells and osteoclast differentiation potential of mouse bone marrow-derived monocytes. In mouse experimental models with bone fractures, oral administration of polaprezinc accelerated fracture healing and maintained a high number of both osteoblasts and osteoclasts in the fracture areas. Collectively, polaprezinc promotes the fracture healing process efficiently by enhancing the activity of both osteoblasts and osteoclasts. Therefore, we suggest that drug repositioning of polaprezinc would be helpful for patients with fractures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 125 - 125
2 Jan 2024
Scala P Giudice V Selleri C Maffulli N Rehak L Porta G
Full Access

Spontaneous muscle regenerative potential is limited, as severe injuries incompletely recover and result in chronic inflammation. Current therapies are restricted to conservative management, not providing a complete restitutio ad integrum; therefore, alternative therapeutic strategies are welcome, such as cell-based therapies with stem cells or Peripheral Blood Mononuclear Cells (PBMCs). Here, we described two different in vitro myogenic models: a 2D perfused system and a 3D bioengineered scaffold within a perfusion bioreactor. Both models were assembled with human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and human primary skeletal myoblasts (hSkMs) to study induction and maintenance of myogenic phenotype in presence of PBMCs. When hBM-MSCs were cultured with human primary skeletal myoblasts (hSkMs) in medium supplemented with 10 ng/mL of bFGF; cells showed increased expression of myogenic-related gene, such as Desmin and Myosin Heavy Chain II (MYH2) after 21 days, and a prevalent expression of anti-inflammatory cytokines (IL10, 15-fold). Next, PBMCs were added in an upper transwell chamber and hBM-MSCs significantly upregulated myogenic genes throughout the culture period, while pro-inflammatory cytokines (e.g., IL12A) were downregulated. In 3D, hBM-MSCs plus hSkMs embedded in fibrin-based scaffolds, cultured in dynamic conditions, showed that all myogenic-related genes tended to be upregulated in the presence of PBMCs, and Desmin and MYH2 were also detected at protein level, while pro-inflammatory cytokine genes were significantly downregulated in the presence of PBMCs. In conclusion, our works suggest that hBM-MSCs have a versatile myogenic potential, enhanced and modulated by PMBCs. Moreover, our 3D biomimetic approach seemed to better resemble the tissue architecture allowing an efficient in vitro cellular cross-talk


Bone & Joint Research
Vol. 5, Issue 7 | Pages 287 - 293
1 Jul 2016
Ismail H Phedy P Kholinne E Djaja YP Kusnadi Y Merlina M Yulisa ND

Objectives. To explore the therapeutic potential of combining bone marrow-derived mesenchymal stem cells (BM-MSCs) and hydroxyapatite (HA) granules to treat nonunion of the long bone. Methods. Ten patients with an atrophic nonunion of a long bone fracture were selectively divided into two groups. Five subjects in the treatment group were treated with the combination of 15 million autologous BM-MSCs, 5g/cm. 3. (HA) granules and internal fixation. Control subjects were treated with iliac crest autograft, 5g/cm. 3. HA granules and internal fixation. The outcomes measured were post-operative pain (visual analogue scale), level of functionality (LEFS and DASH), and radiograph assessment. Results. Post-operative pain evaluation showed no significant differences between the two groups. The treatment group demonstrated faster initial radiographic and functional improvements. Statistically significant differences in functional scores were present during the first (p = 0.002), second (p = 0.005) and third (p = 0.01) month. Both groups achieved similar outcomes by the end of one-year follow-up. No immunologic or neoplastic side effects were reported. Conclusions. All cases of nonunion of a long bone presented in this study were successfully treated using autologous BM-MSCs. The combination of autologous BM-MSCs and HA granules is a safe method for treating nonunion. Patients treated with BM-MSCs had faster initial radiographic and functional improvements. By the end of 12 months, both groups had similar outcomes. Cite this article: H.D. Ismail, P. Phedy, E. Kholinne, Y. P. Djaja, Y. Kusnadi, M. Merlina, N. D. Yulisa. Mesenchymal stem cell implantation in atrophic nonunion of the long bones: A translational study. Bone Joint Res 2016;5:287–293. DOI: 10.1302/2046-3758.57.2000587


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 107 - 107
1 Mar 2021
Çiftçi-Dede E Korkusuz F Korkusuz P
Full Access

Mesenchymal stem cell (MSC) exosomes are intracellular vesicles, which can regulate transcription and control gene expression through the molecules they carry, easily enter into the target cell, contain no regenerative effect, and do not produce an immune response. There are different methods in the literature to obtain these vesicles. However, studies on the isolation of MSC-derived exosomes and their comparative characterization using magnetically active cell sorting (MACS) and ultracentrifugation methods are lacking. The most appropriate isolation method for MSC-derived exosomes can be determined by comparing the isolation and characterization parameters of mesenchymal stem cells using magnetically active cell sorting and ultracentrifugation methods. The aim of this study was to define the advantages and disadvantages of the methods used for determining the purpose-oriented method. Human bone marrow-derived mesenchymal stem cells were cultured in standard MSC culture conditions (37ºC and 5% CO 2). Exosomal contamination was prevented by removal of exosomes from the serum that used in the standard growth medium. For exosome isolation of the cells reaching sufficient density, the media were replaced with new ones every two days, the old media were collected in liquid refrigerated with liquid nitrogen and stored at −80ºC. Part of the accumulated exosomes were isolated by using the MACS method, while the other was isolated by using the ultracentrifugation method, which included serial centrifugation steps. The amount of protein contained in the phosphate buffer solution in which the exosomes were reconstituted was determined by microplate reader using the BCA kit. Based on the protein concentration obtained, exosomes were read by means of a dye flow cytometer with fluorescent antibodies attached to surface markers specific to CD9, CD63, and CD81 specific for exosomes by latex beads. Finally, the exosomes were stained with uranyl acetate and phosphotungstic acid and then placed on 200 mesh and formvar-carbon film coated grids. Exosomes were isolated using both ultracentrifugation and MACS methods. While ultra-large amounts of exosomes can be isolated by ultracentrifugation method, MACS method provides a lower amount of isolation. Exosomes with magnetically active cell sorting are selected with specific surface markers, therefore, exosomal purity is thought to be higher. Exosomes which were isolated by both ultracentrifugation and MACS methods were monitored by using transmission electron microscopy and they were not found to be morphologically different. In conclusion, MACS and ultracentrifugation are effective methods for the isolation of human bone marrow-derived MSC exosomes. Both methods have advantages and disadvantages. Exosomes can be isolated together with magnetic beads using the MACS method. In the ultracentrifuge method, cleaner exosomes can be isolated. While the exosomes are isolated by MACS, they can also be characterized by beads


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 127 - 127
1 Nov 2018
Yan Z Yin H Nerlich M Pfeifer C Docheva D
Full Access

Tendons are dense connective tissues and critical components of the musculoskeletal system with known long repair process. Tissue engineering is a promising approach for achieving complete recovery of ruptured tendons. The most studies have focused on the combination of cells with various carriers; however, frequent times the biomaterials do not match the tissue organization and strength. For this reason, we first reviewed the literature for an alternative scaffold-free strategy for tendon engineering and second, we compared the cell sheet formation of two different cell types: bone marrow-derived mesenchymal stem cells (BM-MSCs) and tendon stem/progenitor cells (TSPCs). Methods: Literature search was performed in Pubmed using “tendon tissue engineering” and “scaffold-free” keywords and was limited to the last ten years. By using a 3-step protocol, BM-MSCs and TSPCs were induced to form cell sheets in 5 weeks. The sheets were compared by analysis for weight, diameter, cell density, tissue morphology (H&E and scoring) and cartilaginous matrix (DMMB and S.O. staining). Results: Scaffold-free models (cell sheets and pellet cultures) are available; however, further optimization is needed. Comparison between the two cell types clearly demonstrated that TSPCs form more mature cell sheet, while BMSCs form larger but less organized and differentiated sheet as judged by higher cell density and lower scoring outcome. Future efforts will focus on identifying mechanisms to speed BM-MSC sheet formation and maturation, which can in turn lead to development of new methodology for scaffold-free tendon tissue engineering


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 67 - 67
1 Apr 2018
Schäck L Noack S Krettek C Neunaber C
Full Access

Introduction. Human bone marrow-derived mesenchymal stem cells (hBMSCs) can adopt either an immune suppressive or stimulative phenotype in response to cytokines and pathogen-associated molecular patterns (PAMPs). It is known that the glycoprotein CD24 allows for the discrimination between PAMPs and DAMPs in dendritic cells. We were able to show previously that CD24 is expressed by hBMSCs and found that its overexpression leads to the downregulation of NF-kB-regulated genes, as well as induction of the anti-inflammatory TGF beta. In the present study the influence of various PAMPs and cytokines on the expression of CD24 in hBMSCs was analysed. Furthermore, it was tested whether in vivo-CD24-positive (CD24+) and in vivo-CD24-negative (CD24-) hBMSCs differ in regard to classical hBMSC or immune-associated surface antigens. Methods. hBMSCs were enriched by density gradient centrifugation, cultured in vitro until passage 3 and subsequently stimulated with PAMPs or cytokines (IFN gamma, TGF beta) before analysing the expression of CD24 via qRT-PCR. Cells expressing CD24 in vivo (CD24+ hBMSCs) were enriched from bone marrow aspirates after density gradient centrifugation by the use of magnetic-associated cell sorting (MACS). Successful enrichment was evaluated by flow cytometric analysis. The enriched cells were subsequently cultured in comparison to the CD24-depleted cell population (CD24- hBMSCs) under identical conditions. The expression of various cell surface markers was compared between these two populations using flow cytometry. Results. All tested PAMPs, as well as IFN gamma led to the downregulation of CD24 in comparison to non-stimulated control cells. In contrast, stimulation with TGF beta resulted in an increased CD24 expression. CD24-positive hBMSCs were successfully enriched via MACS and cultured in vitro. While there was no difference between the expression of classical hBMSC surface antigens between the two cell populations, the CD24+ population had a significantly higher expression of PD-L1 than the CD24- population. Discussion. hBMSCs are capable of ameliorating autoimmune processes by inducing T-cell anergy. Polymorphisms in CD24 are associated with the development of autoimmune diseases. In this context it is worth of note that CD24+ hBMSCs show an elevated expression of PD-L1. PD-L1 is a molecule that can induce anergy in T cells by binding to PD-1 thereby dampening the immune response to self antigens. Therefore, hBMSCs with strong CD24-expression might be beneficial in treating autoimmune diseases such as rheumatoid arthritis. PAMPs and IFN-gamma lead to the downregulation of CD24, which may strip hBMSCs of their ability to induce T cell anergy and to dampen immune responses to self antigens


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 16 - 16
2 Jan 2024
Aydin M Luciani T Mohamed-Ahmed S Yassin M Mustafa K Rashad A
Full Access

The aim of this study is to print 3D polycaprolactone (PCL) scaffolds at high and low temperature (HT/LT) combined with salt leaching to induced porosity/larger pore size and improve material degradation without compromising cellular activity of printed scaffolds. PCL solutions with sodium chloride (NaCl) particles either directly printed in LT or were casted, dried, and printed in HT followed by washing in deionized water (DI) to leach out the salt. Micro-Computed tomography (Micro-CT) and scanning electron microscope (SEM) were performed for morphological analysis. The effect of the porosity on the mechanical properties and degradation was evaluated by a tensile test and etching with NaOH, respectively. To evaluate cellular responses, human bone marrow-derived mesenchymal stem/stromal cells (hBMSCs) were cultured on the scaffolds and their viability, attachment, morphology, proliferation, and osteogenic differentiation were assessed. Micro-CT and SEM analysis showed that porosity induced by the salt leaching increased with increasing the salt content in HT, however no change was observed in LT. Structure thickness reduced with elevating NaCl content. Mass loss of scaffolds dramatically increased with elevated porosity in HT. Dog bone-shaped specimens with induced porosity exhibited higher ductility and toughness but less strength and stiffness under the tension in HT whereas they showed decrease in all mechanical properties in LT. All scaffolds showed excellent cytocompatibility. Cells were able to attach on the surface of the scaffolds and grow up to 14 days. Microscopy images of the seeded scaffolds showed substantial increase in the formation of extracellular matrix (ECM) network and elongation of the cells. The study demonstrated the ability of combining 3D printing and particulate leaching together to fabricate porous PCL scaffolds. The scaffolds were successfully printed with various salt content without negatively affecting cell responses. Printing porous thermoplastic polymer could be of great importance for temporary biocompatible implants in bone tissue engineering applications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 138 - 138
2 Jan 2024
Silva J Garrudo F Meneses J Marcelino P Barbosa F Moura C Alves N Pascoal-Faria P Ferreira F
Full Access

The growing number of non-union fractures in an aging population has increased the clinical demand for tissue-engineered bone. Electrical stimulation (ES) has been described as a promising strategy for bone regeneration treatments in several clinical studies. However the underlying mechanism by which ES augments bone formation is still poorly understood and its use in bone tissue engineering (BTE) strategies is currently underexplored. Additive manufacturing (AM) technologies (Fused Deposition Modeling/3D Printing) have been widely used in BTE due to their ability to fabricate scaffolds with a high control over their structural and mechanical properties in a reproducible and scalable manner. Thus, in this work, we combined AM methods with conductive biomaterials and ES to enhance the osteogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells (hBMSCs) envisaging improved BTE strategies. First, we started by developing AM-based electro-bioreactor devices containing medical-grade electrodes (stainless steel and Ti6Al4V) to apply ES to monolayer 2D cultures and 3D cell-seeded scaffolds. Computer modeling(Finite Element Analysis-FEA) was employed to predict the magnitude/distribution of electrical fields within the ES devices and along the different conductive scaffolds. Prior to scaffold culture, 5 different ES protocols were tested in terms of their ability to promote hBMSCs proliferation and osteogenic differentiation in 2D cultures. The best performance ES protocol was then used in two different AM-based BTE strategies: 1) Two different conductive scaffolds (conductive poly lactic acid (PLA) and titanium) were seeded with hBMSCs and cultured for 21 days under osteogenic medium conditions with and without ES and their biological performance was evaluated in comparison to non-conductive standard PLA scaffolds; 2) Different PEDOT:PSS-based coating solutions were screened to obtain PEDOT:PSS/Gelatin-coated 3D polycaprolactone (PCL) scaffolds with a high(11 S.cm. -1. ) and stable electroconductivity. When cultured under ES, PEDOT:PSS/Gelatin-PCL scaffolds enhanced significantly hBMSCs osteogenic differentiation and mineralization(calcium deposition), highlighting their potential for BTE applications. Acknowledgements: Funding received from FCT through projects InSilico4OCReg (PTDC/EME-SIS/0838/2021), OptiBioScaffold (PTDC/EME-SIS/4446/2020) and BioMaterARISES (EXPL/CTM-CTM/0995/2021), and to the institutions iBB (UIDB/04565/2020), CDRSP (UIDB/04044/2020) and Associate Laboratory i4HB (LA/P/0140/2020)


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 133 - 138
1 Jan 2007
Oe K Miwa M Sakai Y Lee SY Kuroda R Kurosaka M

We isolated multilineage mesenchymal progenitor cells from haematomas collected from fracture sites. After the haematoma was manually removed from the fracture site it was cut into strips and cultured. Homogenous fibroblastic adherent cells were obtained. Flow cytometry revealed that the adherent cells were consistently positive for mesenchymal stem-cell-related markers CD29, CD44, CD105 and CD166, and were negative for the haemopoietic markers CD14, CD34, CD45 and CD133 similar to bone-marrow-derived mesenchymal stem cells. In the presence of lineage-specific induction factors the adherent cells could differentiate in vitro into osteogenic, chondrogenic and adipogenic cells.

Our results indicate that haematomas found at a fracture site contain multilineage mesenchymal progenitor cells and play an important role in bone healing. Our findings imply that to enhance healing the haematoma should not be removed from the fracture site during osteosynthesis.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 682 - 687
1 May 2006
Kanazawa T Soejima T Murakami H Inoue T Katouda M Nagata K

We studied bone-tendon healing using immunohistochemical methods in a rabbit model.

Reconstruction of the anterior cruciate ligament was undertaken using semitendinosus tendon in 20 rabbits. Immunohistochemical evaluations were performed at one, two, four and eight weeks after the operation. The expression of CD31, RAM-11, VEGF, b-FGF, S-100 protein and collagen I, II and III in the bone-tendon interface was very similar to that in the endochondral ossification. Some of the type-III collagen in the outer layer of the graft, which was deposited at a very early phase after the operation, was believed to have matured into Sharpey-like fibres. However, remodelling of the tendon grafted into the bone tunnel was significantly delayed when compared with this ossification process. To promote healing, we believe that it is necessary to accelerate remodelling of the tendon, simultaneously with the augmentation of the ossification.