Advertisement for orthosearch.org.uk
Results 1 - 20 of 48
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 5 | Pages 907 - 914
1 Sep 1999
Bobyn JD Stackpool GJ Hacking SA Tanzer M Krygier JJ

We have studied the characteristics of bone ingrowth of a new porous tantalum biomaterial in a simple transcortical canine model using cylindrical implants 5 × 10 mm in size. The material was 75% to 80% porous by volume and had a repeating arrangement of slender interconnecting struts which formed a regular array of dodecahedron-shaped pores. We performed histological studies on two types of material, one with a smaller pore size averaging 430 μm at 4, 16 and 52 weeks and the other with a larger pore size averaging 650 μm at 2, 3, 4, 16 and 52 weeks. Mechanical push-out tests at 4 and 16 weeks were used to assess the shear strength of the bone-implant interface on implants of the smaller pore size. The extent of filling of the pores of the tantalum material with new bone increased from 13% at two weeks to between 42% and 53% at four weeks. By 16 and 52 weeks the average extent of bone ingrowth ranged from 63% to 80%. The tissue response to the small and large pore sizes was similar, with regions of contact between bone and implant increasing with time and with evidence of Haversian remodelling within the pores at later periods. Mechanical tests at four weeks indicated a minimum shear fixation strength of 18.5 MPa, substantially higher than has been obtained with other porous materials with less volumetric porosity. This porous tantalum biomaterial has desirable characteristics for bone ingrowth; further studies are warranted to ascertain its potential for clinical reconstructive orthopaedics


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 6 | Pages 1069 - 1075
1 Nov 1999
Goodman SB Song Y Chun L Regula D Aspenberg P

We implanted bone harvest chambers (BHCs) bilaterally in ten mature male New Zealand white rabbits. Polyethylene particles (0.3 ± 0.1 −m in diameter, 6.4×10. 12. particles/ml) were implanted for two, four or six weeks bilaterally in the BHCs, with subsequent removal of the ingrown tissue after each treatment. In addition to the particles, one side also received 1.5 −g of recombinant transforming growth factor ß1 (TGFβ1). At two weeks, the bone area as a percentage of total area was less in chambers containing TGFβ compared with those with particles alone (7.8 ± 1.3% v 16.9 ± 2.7% respectively; 95% confidence interval (CI) for difference -14.0 to -4.30; p = 0.002). At four weeks, the percentage area of bone was greater in chambers containing TGFβ compared with those with particles alone (31.2 ± 3.4% v 22.5 ± 2.0% respectively; 95% CI for difference 1.0 to 16.4; p = 0.03). There were no statistical differences at six weeks, despite a higher mean value with TGFβ treatment (38.2 ± 3.9% v 28.8 ± 3.5%; 95% CI for difference -4.6 to 23.3; p = 0.16). The number of vitronectin-receptor-positive cells (osteoclast-like cells) was greater in the treatment group with TGFβ compared with that with particles alone; most of these positive cells were located in the interstitium, rather than adjacent to bone. TGFβ1 is a pleotropic growth factor which can modulate cellular events in the musculoskeletal system in a time- and concentration-dependent manner. Our data suggest that there is an early window at between two and six weeks, in which TGFβ may favourably affect bone ingrowth in the BHC model. Exogenous growth factors such as TGFβ may be a useful adjunct in obtaining osseointegration and bone ingrowth, especially in revisions when there is compromised bone stock and residual particulate debris


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 15 - 15
1 Aug 2012
Allen F Blunn G McCarthy I O'Donnell M Stevens M Goodship A
Full Access

Synthetic bone grafts are used in several major dental and orthopaedic procedures. Strontium, in the form of strontium ranelate, has been shown to reduce fracture risk when used to treat osteoporosis. The aim of the study was to compare bone repair in femoral condyle defects filled with either a 10% strontium substituted bioactive glass (StronBoneTM) or a TCP-CaSO4 graft. We hypothesise that strontium substituted bioactive glass increases the rate of bone ingrowth into a bone defect when compared to a TCP-CaSO4 ceramic graft. A critical size defect was created in the medial femoral condyle of 24 sheep; half were treated with a Sr-bioactive glass (StronBoneTM), and in the other animals defects were filled TCP-CaSO4. Two time points of 90 and 180 days were selected. The samples were examined with regard to: bone mineral density (BMD) from peripheral quantitative CT (pQCT), mechanical properties through indentation testing, and bony ingrowth and graft resorption through histomorphometry. The radiological density of Sr-bioactive glass in the defect is significantly higher than that of the TCP-CaSO4-filled defect at 90 and 180 days, (p=0.035 and p=0.000). At 90 days, the stiffness of the defect containing Sr-bioactive glass and is higher than that of the TCP-CaSO4 filled defect, (p=0.023). At 6 months there is no significant difference between the two materials. Histomorphometry showed no significant difference in bone ingrowth at any time point, however significantly more of the graft is retained for the StronBoneTM treatment group than the TCP-CaSO4 group at both 0 days (p=0.004) and 180 days (p=0.000). The amount of soft tissue within the defect was significantly less in the StronBoneTM group than for the TCP-CaSO4 group at 90 days (p=0.006) and 180 days (p=0.000). The data shows the mechanical stability of the defect site is regained at a faster rate with the strontium substituted bioglass than the TCP-CaSO4 alternative. Histomorphmetry shows this is not due to increased bone ingrowth but may be due to the incorporation of stiff graft particles into the trabeculae. Sr-bioactive glass produces a stronger repair of a femoral condyle defect at 3 months compared with TCP-CaSO4


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 915 - 919
1 Aug 2002
Bechtold JE Kubic V Søballe K

We have investigated whether the presence of polyethylene (PE) alone is sufficient to cause an aggressive periprosthetic tissue response, or whether certain mechanical interface conditions can allow bone to grow while in the presence of PE. An experimental implant was loaded in the presence and absence of particulate PE under stable and unstable conditions.

Bone with a thin, discontinuous fibrous membrane formed in both groups of stable implants, either in the presence or absence of PE. By contrast, a continuous fibrous membrane consistently formed in both groups of unstable implants. The membrane consisted of loose fibrous connective tissue when PE was absent, and dense connective tissue with macrophages and a synovial lining when PE was present. In this model, if the interface was stable, the presence of PE was not sufficient to prevent the formation of bone or to produce a phagocytic tissue response. Only when the interface was unstable did a fibrous membrane form, and only then in the presence of PE.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 26 - 26
17 Nov 2023
Zou Z Cheong VS Fromme P
Full Access

Abstract. Objectives. Young patients receiving metallic bone implants after surgical resection of bone cancer require implants that last into adulthood, and ideally life-long. Porous implants with similar stiffness to bone can promote bone ingrowth and thus beneficial clinical outcomes. A mechanical remodelling stimulus, strain energy density (SED), is thought to be the primary control variable of the process of bone growth into porous implants. The sequential process of bone growth needs to be taken into account to develop an accurate and validated bone remodelling algorithm, which can be employed to improve porous implant design and achieve better clinical outcomes. Methods. A bone remodelling algorithm was developed, incorporating the concept of bone connectivity (sequential growth of bone from existing bone) to make the algorithm more physiologically relevant. The algorithm includes adaptive elastic modulus based on apparent bone density, using a node-based model to simulate local remodelling variations while alleviating numerical checkerboard problems. Strain energy density (SED) incorporating stress and strain effects in all directions was used as the primary stimulus for bone remodelling. The simulations were developed to run in MATLAB interfacing with the commercial FEA software ABAQUS and Python. The algorithm was applied to predict bone ingrowth into a porous implant for comparison against data from a sheep model. Results. The accuracy of the predicted bone remodelling was verified for standard loading cases (bending, torsion) against analytical calculations. Good convergence was achieved. The algorithm predicted good bone remodelling and growth into the investigated porous implant. Using the standard algorithm without connectivity, bone started to remodel at locations unconnected to any bone, which is physiologically implausible. The implementation of bone connectivity ensures the gradual process of bone growth into the implant pores from the sides. The bone connectivity algorithm predicted that the full remodelling required more time (approximately 50% longer), which should be considered when developing post-surgical rehabilitation strategies for patients. Both algorithms with and without bone connectivity implementation converged to same final stiffness (less than 0.01% difference). Almost all nodes reached the same density value, with only a limited number of nodes (less than 1%) in transition areas with a strong density gradient having noticeable differences. Conclusions. An improved bone remodelling algorithm based on strain energy density that modelled the sequential process of bone growth has been developed and tested. For a porous metallic bone implant the same final bone density distribution as for the original adaptive elasticity theory was predicted, with a slower and more fidelic process of growth from existing surrounding bone into the porous implant. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 21 - 21
4 Apr 2023
Meinshausen A Büssemaker H Viet Duc B Döring J Voropai V Müller A Martin A Berger T Schubert A Bertrand J
Full Access

Periprosthetic joint infections (PJI) are one of the most common reasons for orthopedic revision surgeries. In previous studies, it has been shown that silver modification of titanium (Ti-6Al-4V) surfaces by PMEDM (powder mixed electrical discharge machining) has an antibacterial effect on Staphylococcus aureus adhesion. Whether this method also influences the proliferation of bacteria has not been investigated so far. Furthermore, the effect is only limitedly investigated on the ossification processes. Therefore, the aim of this work is to investigate the antibacterial effect as well as the in vitro ossification process of PMEDM machined surfaces modified by integration of silver. In this study, we analyzed adhesion and proliferation of S. aureus in comparison to of surface roughness, silver content and layer thickness of the silver-integrated-PMEDM surfaces (N = 5). To test the in vitro ossification, human osteoblasts (SaOs-2) and osteoclasts (differentiated from murine-bone-marrow-macrophages) were cultured on the silver surfaces (N = 3). We showed that the attachment of S. aureus on the surfaces was significantly lower than on the comparative control surfaces of pure Ti-6Al-4V without incorporated silver, independently of the measured surface properties. Bacterial proliferation, however, was not affected by the silver content. No influence on the in vitro ossification was observed, whereas osteoclast formation was drastically reduced on the silver-modified surfaces. We showed that 1 to 3% of silver in the surface layer significantly reduced the adhesion of S. aureus, but not the proliferation of already attached bacteria. At the same time, no influence on the in vitro ossification was observed, while no osteoclasts were formed on the surface. Therefore, we state that PMEDM with simultaneous silver modification of the machined surfaces represents a promising technology for endoprostheses manufacturing to reduce infections while at the same time optimizing bone ingrowth


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 72 - 72
17 Apr 2023
Hsieh Y Hsieh M Shu Y Lee H
Full Access

A spine compression fracture is a very common form of fracture in elderly with osteoporosis. Injection of polymethyl methacrylate (PMMA) to fracture sites is a minimally invasive surgical treatment, but PMMA has considerable clinical risks. We develop a novel type thermoplastic injectable bone substitute contains the proprietary composites of synthetic ceramic bone substitute and absorbable thermoplastic polymer. We used thermoplastic biocompatible polymers Polycaproactone (PCL) to encapsulate calcium-based bone substitutes hydroxyapatite (Ca10(PO4)6(OH)2, HA) and tricalcium phosphate (TCP) to form a biodegradable injectable bone composite material. The space occupation ration PCL:HA/TCP is 1:9. After heating process, it can be injected to fracture site by specific instrument and then self-setting to immediate reinforce the vertebral body. The thermoplastic injection bone substitute can obtain good injection properties after being heated by a heater at 90˚C for three minutes, and has good anti-washout property when injected into normal saline at 37˚C. After three minutes, solidification is achieved. Mechanical properties were assessed using the material compression test system and the mechanical support close to the vertebral spongy bone. In vitro cytotoxicity MTT assay (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was performed and no cell cytotoxicity was observed. In vivo study with three New Zealand rabbits was performed, well bone growth into bone substitute was observed and can maintain good mechanical support after three months implantation. The novel type thermoplastic injection bone substitute can achieve (a) adequate injectability and viscosity without the risk of cement leakage; (b) adequate mechanical strength for immediate reinforcement and prevent adjacent fracture; (c) adequate porosity for new bone ingrowth; (e) biodegradability. It could be developed as a new option for treating vertebral compression fractures


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 74 - 74
17 Apr 2023
Theodoridis K Hall T Munford M Van Arkel R
Full Access

The success of cementless orthopaedic implants relies on bony ingrowth and active bone remodelling. Much research effort is invested to develop implants with controllable surface roughness and internal porous architectures that encourage these biological processes. Evaluation of these implants requires long-term and costly animal studies, which do not always yield the desired outcome requiring iteration. The aim of our study is to develop a cost-effective method to prescreen design parameters prior to animal trials to streamline implant development and reduce live animal testing burden. Ex vivo porcine cancellous bone cylinders (n=6, Ø20×12mm) were extracted from porcine knee joints with a computer-numerically-controlled milling machine under sterile conditions within 4 hours of animal sacrifice. The bone discs were implanted with Ø6×12mm additive manufactured porous titanium implants and were then cultured for 21days. Half underwent static culture in medium (DMEM, 10% FBS, 1% antibiotics) at 37°C and 5% CO. 2. The rest were cultured in novel high-throughput stacked configuration in a bioreactor that simulated physiological conditions after surgery: the fluid flow and cyclic compression force were set at 10ml/min and 10–150 N (1Hz,5000 cycles/day) respectively. Stains were administered at days 7 and 14. Samples were evaluated with widefield microscopy, scanning electron microscopy (SEM) and with histology. More bone remodelling was observed on the samples cultured within the bioreactor: widefield imaging showed more remodelling at the boundaries between the implant-bone interface, while SEM revealed immature bone tissue integration within the pores of the implant. Histological analysis confirmed these results, with many more trabecular struts with new osteoid formation on the samples cultured dynamically compared to static ones. Ex vivo bone can be used to analyse new implant technologies with lower cost and ethical impact than animal trial. Physiological conditions (load and fluid flow) promoted bone ingrowth and remodelling


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 416 - 420
1 Mar 2005
Bobyn JD Hacking SA Krygier JJ Harvey EJ Little DG Tanzer M

The effect of zoledronic acid on bone ingrowth was examined in an animal model in which porous tantalum implants were placed bilaterally within the ulnae of seven dogs. Zoledronic acid in saline was administered via a single post-operative intravenous injection at a dose of 0.1 mg/kg. The ulnae were harvested six weeks after surgery. Undecalcified transverse histological sections of the implant-bone interfaces were imaged with backscattered scanning electron microscopy and the percentage of available pore space that was filled with new bone was calculated. The mean extent of bone ingrowth was 6.6% for the control implants and 12.2% for the zoledronic acid-treated implants, an absolute difference of 5.6% (95% confidence interval, 1.2 to 10.1) and a relative difference of 85% which was statistically significant. Individual islands of new bone formation within the implant pores were similar in number in both groups but were 69% larger in the zoledronic acid-treated group. The bisphosphonate zoledronic acid should be further investigated for use in accelerating or enhancing the biological fixation of implants to bone


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 670 - 675
1 May 2009
Agholme F Aspenberg P

Soaking bone grafts in a bisphosphonate solution before implantation can prevent their resorption and increase the local bone density in rats and humans. However, recent studies suggest that pre-treatment of allografts with bisphosphonate can prevent bone ingrowth into impaction grafts. We tested the hypothesis that excessive amounts of bisphosphonate would also cause a negative response in less dense grafts. We used a model where non-impacted metaphyseal bone grafts were randomised into three groups with either no bisphosphonate, alendronate followed by rinsing, and alendronate without subsequent rinsing, and inserted into bone chambers in rats. The specimens were evaluated histologically at one week, and by histomorphometry and radiology at four weeks. At four weeks, both bisphosphonate groups showed an increase in the total bone content, increased newly formed bone, and higher radiodensity than the controls. In spite of being implanted in a chamber with a limited opportunity to diffuse, even an excessive amount of bisphosphonate improved the outcome. We suggest that the negative results seen by others could be due to the combination of densely compacted bone and a bisphosphonate. We suggest that bisphosphonates are likely to have a negative influence where resorption is a prerequisite to create space for new bone ingrowth


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 11 - 11
1 Nov 2021
Imwinkelried T Heuberger R Eggli S
Full Access

Introduction and Objective. Local cartilage defects in the knee are painful and mostly followed by arthritis. In order to avoid impaired mobility, the osteochondral defect might be bridged by a synthetic compound material: An osteoconductive titanium foam as an anchoring material in the subchondral bone and an infiltrated polymer as gliding material in contact with the surrounding natural cartilage. Materials and Methods. Titanium foam cylinders (Ø38 mm) with porosities ranging from 57% to 77% were produced by powder metallurgy with two different grain sizes of the space holder (fine: 340 ± 110 μm, coarse: 530 ± 160 μm). The sintered titanium foam cylinders were infiltrated with UHMWPE powder on one end and UHMWPE bulk at the other end, at two different temperatures (160 °C, 200 °C), using a pressure of 20 MPa for 15 minutes. Smaller cylinders (Ø16 mm) were retrieved from the compound material by water jet cutting. The infiltration depths were determined by optical microscopy. The anchoring of the UHMWPE was measured by a shear test and the mechanical properties of the titanium foam were verified by a subsequent compression test. The tribological behaviour was investigated in protein containing liquid using fresh cartilage pins (Ø5 mm) sliding against a UHMWPE disc with or without a notch to simulate the gap between the implant and the surrounding cartilage. Friction coefficients were determined in a rotation tribometer and the cartilage wear in a multidirectional six-station tribometer from AMTI (load 10 – 50 N, sliding speed 20 mm/s, 37 °C). Results. UHMWPE could be infiltrated into titanium foam by 1.1 – 1.3 mm with fine pores and by 1.5 – 1.8 mm with coarse pores. The infiltration was neither dependent on the type of UHMWPE (powder or bulk) nor on the temperature. The polymer was so well anchored inside the titanium foam pores that the shear forces for the compounds exceeded the shear strength obtained for a UHMWPE-cylinder. This effect was due to the increased stiffness of the compound plug. Uniaxial compression of the titanium foams after the shear-off of the polymer revealed yield strengths ranging from 50 – 88 MPa for porosities of 62 – 73%. The Ø16 mm samples yielded beyond physiological loads in the knee (≥ 10x body weight) and behaved in a strain hardening and fully ductile manner, reaching deformations of at least 50 % of their initial height without the appearance of macroscopically visible cracks. For smaller plug diameters down to Ø8 mm, however, the lower porosity / higher strength foam should be used to limit elastic deformation of the compound to < 0.1 mm. Pore size did not significantly influence the strength and stiffness values. The elevated coefficient of friction between cartilage and UHMWPE of about 1 was not negatively affected by the presence of the gap. The height loss of the cartilage pin after 1 hour (respectively after 3600 reciproque wear cycles) was 0.2 ± 0.1 mm using a flat disc. For discs with a 1 mm wide V-notch, the wear increased to 0.9 ± 0.3 mm. Conclusions. The tested titanium foams are well suited to act as an anchoring material in the subchondral bone as mechanical properties can be tailored by choosing the adequate porosity and as bone ingrowth has previously been demonstrated for the used pore sizes. UHMWPE is not an ideal gliding partner against cartilage because the friction coefficients of frictions were high. The presence of a V-notched gap was detrimental for cartilage wear. More hydrophilic polymers like PCU should be tested as potential gliding materials


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 8 | Pages 1182 - 1189
1 Nov 2003
Hacking SA Harvey EJ Tanzer M Krygier JJ Bobyn JD

We designed an in vivo study to determine if the superimposition of a microtexture on the surface of sintered titanium beads affected the extent of bone ingrowth. Cylindrical titanium intramedullary implants were coated with titanium beads to form a porous finish using commercial sintering techniques. A control group of implants was left in the as-sintered condition. The test group was etched in a boiling acidic solution to create an irregular surface over the entire porous coating. Six experimental dogs underwent simultaneous bilateral femoral intramedullary implantation of a control implant and an acid etched implant. At 12 weeks, the implants were harvested in situ and the femora processed for undecalcified, histological examination. Eight transverse serial sections for each implant were analysed by backscattered electron microscopy and the extent of bone ingrowth was quantified by computer-aided image analysis. The extent of bone ingrowth into the control implants was 15.8% while the extent of bone ingrowth into the etched implants was 25.3%, a difference of 60% that was statistically significant. These results are consistent with other research that documents the positive effect of microtextured surfaces on bone formation at an implant surface. The acid etching process developed for this study represents a simple method for enhancing the potential of commonly available porous coatings for biological fixation


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 118 - 118
1 Dec 2020
Vallejos R Contreras J Aiyangar A Palza H Vivanco JF
Full Access

Bioactive glasses, such as 45S5 Bioglass (BG), have been shown to promote bone ingrowth both in vitro and in vivo. The goal of this study was to analyze the effect of a high dose of BG (20%) in Direct Ink Writing (DIW)-produced controlled-geometry PCL-BG composite scaffolds in both their mechanical and biological performance. Porous cubes of 5 × 5 × 5 mm, 50% porosity and pore size and strut diameter of 400 µm were fabricated in a 3D-Bioplotter (EnvisionTec) to investigate their biological performance (n = 3). Additionally, cylindrical specimens (10 mm diameter; 15 mm height) with same internal structure were fabricated for mechanical testing (n = 6). The cylindrical specimens were tested by compression in a universal testing machine (ZwickRoell) with a 10 kN load cell. The tests were performed at 1.00 mm/min with extensometers in both sides. For biological characterization, scaffolds were sterilized in 70% ethanol overnight and pre-incubated with DMEM for 1 hour at room temperature. 1×10. 5. human gingival mesenchymal stem cells (hGMSCs) in 50 µl DMEM were seeded on the scaffolds using agarose molds to improve cell adhesion, and cultured in standard cell-culture conditions for 3, 7 and 14 days. To measure cell proliferation, the reagent CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS, Promega) was added to the cell-seeded scaffolds at each time point, using non-seeded scaffolds as blank controls. The OD (490 nm) was measured in a BioTek 800 TS plate reader. Both the apparent elastic modulus and yield stress were significantly lower in the scaffolds with 20% BG than their PCL control counterparts (p < 0.0001 for elastic modulus and p < 0.005 for yield stress, t-test). Cell proliferation in the scaffolds by MTS was variable, with the 20% BG scaffolds showing a significantly higher signal after seven days in culture (p < 0.05 by t-test), but a significantly lower signal after 14 days in culture (p < 0.05 by t-test). In conclusion, scaffolds with 20% BG showed a lower mechanical performance than their PCL counterparts in terms of both their apparent elastic modulus and yield stress. Additionally, scaffolds with 20% BG showed variable cell proliferation rates in terms of their metabolic activity over a two-week period. The decrease in proliferation rate after week 2 after an initial increase at the end of week 1 could be due to cytotoxic effects of the BG at this high dose (20%) after long term exposure. These results suggest that a dosage of 20% BG may not necessarily improve the mechanical and biological performance of scaffolds, so future experiments are required in order to characterize the optimum BG dosage in PCL scaffolds for tissue engineering applications


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 195 - 195
1 Jul 2014
Malhotra A Pelletier M Yu Y Christou C Walsh W
Full Access

Summary Statement. An autologous thrombin activated 3-fold PRP, mixed with a biphasic calcium phosphate at a 1mL:1cc ratio, is beneficial for early bone healing in older age sheep. Introduction. The management of bone defects continues to present challenges. Upon activation, platelets secrete an array of growth factors that contribute to bone regeneration. Therefore, combining platelet rich plasma (PRP) with bone graft substitutes has the potential to reduce or replace the reliance on autograft. The simple, autologous nature of PRP has encouraged its use. However, this enthusiasm has failed to consistently translate to clinical expediency. Lack of standardisation and improper use may contribute to the conflicting outcomes reported within both pre-clinical and clinical investigations. This study investigates the potential of PRP for bone augmentation in an older age sheep model. Specifically, PRP dose is controlled to provide clearer indications for its clinical use. Methods. Eighty 11mm diameter defects of 20mm in depth were created in the cancellous bone within the epiphyseal region of the medial proximal tibia and distal femur of twenty five-year-old sheep. The defects were treated with three doses of an autologous thrombin activated PRP combined with a biphasic calcium phosphate (BCP). Activated platelet poor plasma (PPP) and the BCP alone provided reference groups, while the autograft and empty defects served as controls. All animals were sacrificed at four weeks post-operatively for radiographic assessment, micro-computed tomography quantification, histological assessment, histomorphometric quantification of new bone area and bone ingrowth, and weekly fluorochrome bone label quantification. TGF-β1 concentrations were quantified using enzyme-linked immunosorbent assays. Results. The PRP had a 2.9-fold (0.4) increase in platelet concentration, a 0.57-fold (0.09) decrease in leukocytes, and a 0.65-fold (0.11) decrease in fibrinogen. After activation, the PRP had an 8.9-fold (1.5) increase in TGF-β1 serum concentration above baseline. Eleven (11) mm diameter cancellous bone defects in the hind legs of five-year-old sheep do not spontaneously heal within four weeks. PRP dose had a significant effect on the radiographic grade. The highest dose of PRP treatment had a significantly greater micro-CT BV/TV over the BCP alone (PRP: 30.6±1.8%; BCP: 24.5±0.1%). All doses of PRP treatment were significantly greater than the BCP alone for both the histomorphometric new bone area (PRP: 14.5±1.3%; BCP: 9.7±1.5%) and bone ingrowth depth (PRP: 2288±210µm; BCP:1151±268µm). From week two onwards, PRP had a significant effect on the weekly bone ingrowth over BCP, however, autograft had the greatest amount of fluorescently labelled bone within the first three weeks. PRP has a significant effect on the shape and density of osteoblasts within the central region of the defect compared to the BCP alone, however, was not significantly different to autograft. TGF-β1 appeared a better predictor of healing outcomes than platelet concentration, however both had relatively weak correlations (r<.324). Conclusion. PRP induces new bone formation with a dose dependant response at four weeks when used with a biphasic calcium phosphate in older age sheep


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 1 | Pages 118 - 123
1 Jan 2001
Coathup MJ Blunn GW Flynn N Williams C Thomas NP

We investigated the implant-bone interface around one design of femoral stem, proximally coated with either a plasma-sprayed porous coating (plain porous) or a hydroxyapatite porous coating (porous HA), or which had been grit-blasted (Interlok). Of 165 patients implanted with a Bimetric hip hemiarthroplasty (Biomet, Bridgend, UK) specimens were retrieved from 58 at post-mortem. We estimated ingrowth and attachment of bone to the surface of the implant in 21 of these, eight plain porous, seven porous HA and six Interlok, using image analysis and light morphometric techniques. The amount of HA coating was also quantified. There was significantly more ingrowth (p = 0.012) and attachment of bone (p > 0.05) to the porous HA surface (mean bone ingrowth 29.093 ± 2.019%; mean bone attachment 37.287 ± 2.489%) than to the plain porous surface (mean bone ingrowth 21.762 ± 2.068%; mean bone attachment 18.9411 ± 1.971%). There was no significant difference in attachment between the plain porous and Interlok surfaces. Bone grew more evenly over the surface of the HA coating whereas on the porous surface, bone ingrowth and attachment occurred more on the distal and medial parts of the coated surface. No significant differences in the volume of HA were found with the passage of time. This study shows that HA coating increases the amount of ingrowth and attachment of bone and leads to a more even distribution of bone over the surface of the implant. This may have implications in reducing stress shielding and limiting osteolysis induced by wear particles


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 119 - 119
1 Nov 2018
Miola M
Full Access

Post-surgical infections are still one of the most frequent adverse events in the prosthetic surgery. PMMA-based cements are widely employed in orthopaedic surgery as filler or prosthetic fixing device. The main problems associated with this material are poor bone integration and infection development. Aiming to avoid bacterial adhesion and to extend the longevity of implants, different solutions were proposed, both in terms of operative procedures and new materials development. Regarding the materials advancement, innovative PMMA-based composite bone cements, contemporaneously bioactive and antibacterial (without the use of antibiotics), were developed. The composites are based on a PMMA matrix containing a bioactive glass, doped with antibacterial ions (Ag+ or Cu++); so, the same filler shows at the same time the ability of promoting bone ingrowth and an antibacterial effect. Composite cements were characterized in terms of morphology and composition, curing parameters and mechanical properties; in vitro tests were performed to verify the material ability to release antibacterial ions and to promote the precipitation of hydroxyapatite. Moreover, cytotoxicity and antimicrobial properties were verified. The cements characteristics were tested using different commercial matrix and different viscosities; therefore, the proposed formulations represent an innovative solution for a new family of antibiotic-free, bioactive and antibacterial cements


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 1 | Pages 120 - 125
1 Jan 2004
Nilsson M Wang J Wielanek L Tanner KE Lidgren L

An injectable material consisting of calcium sulphate mixed with hydroxyapatite was investigated as a possible alternative to autograft in the restoration of bone defects. The material was studied both in vitro in simulated body fluid (SBF) and in vivo when implanted in rat muscles and into the proximal tibiae of rabbits. Variation in the strength and weight of the material during ageing in SBF was measured. Tissue response, material resorption and bone ingrowth were studied in the animal models. A good tissue response was observed in both the rat muscles and rabbit tibiae without inflammatory reactions or the presence of fibrous tissue. Ageing in SBF showed that during the first week carbonated hydroxyapatite precipitated on the surfaces of the material and this may enhance bone ingrowth


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 155 - 155
1 Jul 2014
Hutchinson R Choudry Q McLauchlan G
Full Access

Summary. The 80% porous structure of trabecular metal allows for bone ingrowth in more than 90% of the available surface. The Nexgen LPS Uncemented Knee using a trabecular metal tibial component has performed well at minimum of 5 years’ follow-up. Introduction. Total Knee Arthroplasty prostheses most frequently used in today's practice have cemented components. These have shown excellent clinical results. The fixation can however weaken with time, and cement debris within the articulation can lead to accelerated wear. Cementless implants are less commonly used, but some have also shown good long-term clinical results. The potential advantages of cementless implants are retention of bone stock, less chance of third-body wear due to the absence of cement, shorter operative time, and easier treatment of periprosthetic fractures. The posterior stabilised knee replacement has been said to increase tangential shear stresses on the tibial component and increases contact stresses on the cam and post mechanism hence the great debate of cruciate retaining or cruciate sacrificing implants. Objectives. We report the results of a prospective cohort of consecutive primary total knee arthroplasties using an uncemented posterior stabilised prosthesis using a trabecular metal (tantalum) tibial component at a minimum 5-year follow-up. Methods. Prospective 5 year follow-up of patients undergone an uncemented posterior stabilised total knee replacement using a trabecular metal tibial component (NexgenLPS). Clinical examination, Oxford knee score, Knee society score, SF12 and radiological evaluation undertaken at review. Results. 81 patients, 45 female, 36 male. Left 31, Right 50. Mean age 74.3 yrs range (51–90). SF12, mean: 31.8 range (25–37). Oxford Knee Score Pre-op Mean 20.1 range (9–36) Post op: Mean 32.1 range (9–48). Knee Society score. Pain Mean 91.8; range (60–100). Functional score mean 76.2; range (30–100). Mean Range of movement 110.5 degrees range (90–125). No evidence of loosening at 5 yrs. No deep infection. No Revisions. Conclusion. Although there are a variety of methods of achieving satisfactory initial fixation in cementless components, trabecular metal has an advantage owing to its cellular structure resembling bone. The 80% porous structure of trabecular metal allows for bone ingrowth in more than 90% of the available surface. The Nexgen LPS Uncemented Knee using a trabecular metal tibial component used in this series has shown no evidence of loosening at a minimum of 5 years’ follow-up and the prosthesis as a whole has performed very well clinically. Its early results are comparable to those prostheses most commonly used as reported by the arthroplasty registers. The longer term results from this prosthesis are awaited with interest


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 185 - 185
1 Jul 2014
Amirouche F Solitro G Gonzalez M
Full Access

Summary Statement. A FEA model built from CT-data of frozen cadaver has been validated and used for under-reaming experiments. 1 mm under-reaming can provide contact surface and micromotions that are acceptable and within the clinical relevance without high impact force. Introduction. Long-term cup fixation and stability in total hip arthroplasty (THA) is directly related to the bone ingrowths between the porous cup and the acetabulum. To achieve the initial cup setting, 1 mm of under reaming is becoming the gold standard for cementless cup and what is at stake is usually the actual contact between cup and acetabulum wall. During impact and cup placement, friction forces are generated from the “not permanent” deformations of the acetabular wall that are translated into a gap between the reamed bone and the cup. Clinically the surgeon objective is to have the gap extended to a limited portion of the cup in order to improve bone ingrowth. Hence, the need arises from examining this cup bone stability interface by examining the selected “under reaming” conditions, the surface of contact between the acetabular cup and the bone and its relation to the impact force resulting from the hammering of the cup. Patients & Methods. A validated finite element model built from CT data of fresh frozen hip cadavers has been used for under-reaming mechanically testing experiment. The model was constrained at the sacral and pubic joints to mimic the exact fixation and potting of the pelvis used for testing, and an “impactor” model was used to force the cup into the acetabular reamed socket for both 1 and 2 mm under reaming conditions of the selected cup sizes. Three impact conditions were simulated by imposing cup displacements equivalent to 80, 100 and 120% of the initial distance between the cup apex and the bone. The corresponding reactions forces were evaluated as ideal insertion forces. After the loading phase, a relaxing phase was defined by the removal of load to determine the equilibrium position between the friction forces and the elastic deformation of the actabulum bone. In our last phase, the cup is loaded with a 1500N along the femoral mechanical axis following the same loading conditions of our cup-bone interface experimental setup. Results. The value of under-reaming plays a significant role in the hammering force due to cup placement and has a high correlation with the surface in contact in all cases of implantation, as well as the final stability of the cup throughout loading. When comparing the 2 mm with 1 mm of bone under-reaming we found that the higher degree of under-reaming resulted in slightly greater surface area of contact between the cup and bone as well as reduced micromotion at loading up to 1500 N. However, the impact force requirements for 2mm under reaming was found to be much higher in all three cases investigated. Discussion/Conclusion. Our results indicate that 1 mm under reaming can provide contact surface and micromotions that are both acceptable and within the clinical relevance of cup bone stability without the need of high impact force needed to insert the cup to its desired depth. High insertion forces may lead or cause risk of fracture


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 89 - 89
1 Jul 2014
Arntz P Kuhli M Reimers N Steckel H
Full Access

Summary Statement. This work features a new approach to overcome drawbacks of commercial calcium phosphate cements in terms of application by on-site preparation and bone ingrowth by introduction of macropores in the material using a hydrofluoroalkane based aerosol foam. Introduction. The application of calcium phosphate bone cements (CPCs) into a void for example of an osteoporotic bone is very difficult as the cement paste is made outside the application site and subsequently applied into the damaged bone. A common drawback of especially apatitic cements is a very low resorption rate due to small pore size Therefore different approaches have been described to add macropores into the cement. 2. , leading to bone ingrowth and tissue penetration. The aim of this project is the use of two separate formulations in pressurised systems – a suspension and an emulsion – which can be mixed in a specially developed device and can be applied easily and efficiently into a bone directly during surgery leading to a self-hardening macro porous CPC foam. The intention is to fill voids in osteoporotic bones to ensure stability for implants like e.g. screws for femur neck fractures. An increased stability for implants can allow the possibility of a less invasive femur neck preserving therapy in contrast to a femur neck replacement. Other indications for such foam (i.e. kyphoplasty) are under evaluation. Methods. As suggested above two separate formulations for the components are developed to prevent premature hardening. Hydrofluoroalkanes were preferred as propellants to propane, butane or isobutane, due to their superior safety profile. The hardener component was formulated as propellant-in-water emulsion. Several parentally approved emulsifiers (e.g. Poloxamer 188) were tested in view of solubility at the given salt and binder concentration. The stability of resulting emulsions in pressurised containers, the corresponding foams as well as the foam expansion volume was analyzed. Porous hydroxyapatite is formed after addition of tetra-calciumphosphate, di-calciumphosphate dihydrate and tri-sodiumcitrat dehydrate incorporated in the suspension component. To overcome quick sedimentation of these solids, particle size was reduced by dry or non-aqueous wet milling, respectively. Changes in particle size distribution and enthalpy changes during processes were analyzed. Hardening properties of both components were tested particularly with regard to compressive strength. In order to apply the components, a suitable application system was developed and the hardened product analyzed using x-ray diffraction. Results. The optimised Ca. 2+. /(PO. 4. ). 3−. component is a submicron-sized suspension in a mixture of ethanol and HFA 134a. The development of the suspension led to new knowledge with regard to milling effects on the Ca. 2+. /(PO. 4. ). 3−. components. The optimised hardener component contains an aqueous solution of sodium phosphates, Povidone 90 and Poloxamer 188 emulsified in HFA 227. Both components are formulated in pressurised cans. Discussion/Conclusion. A two component bone foam for stabilisation in osteoporotic bones including a new mixing / application system, which allows actuation of the components and leads to a hardening process that results in hydroxyapatite in a suitable test setup, was developed. The new application system. Further steps i.e. proof of concept (in-vitro and in-vivo) are being taken