Advertisement for orthosearch.org.uk
Results 1 - 20 of 86
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 62 - 67
1 Jun 2019
Tanzer M Chuang PJ Ngo CG Song L TenHuisen KS

Aims. The purpose of this study was to evaluate the biological fixation of a 3D printed porous implant, with and without different hydroxyapatite (HA) coatings, in a canine model. Materials and Methods. A canine transcortical model was used to evaluate the characteristics of bone ingrowth of Ti6Al4V cylindrical implants fabricated using laser rapid manufacturing (LRM). At four and 12 weeks post-implantation, we performed histological analysis and mechanical push-out testing on three groups of implants: a HA-free control (LRM), LRM with precipitated HA (LRM-PA), and LRM with plasma-sprayed HA (LRM-PSHA). Results. Substantial bone ingrowth was observed in all LRM implants, with and without HA, at both time periods. Bone ingrowth increased from 42% to 52% at four weeks, to 60% to 65% at 12 weeks. Mechanical tests indicated a minimum shear fixation strength of 20 MPa to 24 MPa at four weeks, and 34 MPa to 40 MPa at 12 weeks. There was no significant difference in the amount of bone ingrowth or in the shear strength between the three implant types at either time period. Conclusion. At four and 12 weeks, the 3D printed porous implants exhibited consistent bone ingrowth and high mechanical shear strength. Based on the results of this study, we confirmed the suitability of this novel new additive manufacturing porous material for biological fixation by bone ingrowth. Cite this article: Bone Joint J 2019;101-B(6 Supple B):62–67


Bone & Joint Research
Vol. 10, Issue 7 | Pages 388 - 400
8 Jul 2021
Dall’Ava L Hothi H Henckel J Di Laura A Tirabosco R Eskelinen A Skinner J Hart A

Aims. The main advantage of 3D-printed, off-the-shelf acetabular implants is the potential to promote enhanced bony fixation due to their controllable porous structure. In this study we investigated the extent of osseointegration in retrieved 3D-printed acetabular implants. Methods. We compared two groups, one made via 3D-printing (n = 7) and the other using conventional techniques (n = 7). We collected implant details, type of surgery and removal technique, patient demographics, and clinical history. Bone integration was assessed by macroscopic visual analysis, followed by sectioning to allow undecalcified histology on eight sections (~200 µm) for each implant. The outcome measures considered were area of bone attachment (%), extent of bone ingrowth (%), bone-implant contact (%), and depth of ingrowth (%), and these were quantified using a line-intercept method. Results. The two groups were matched for patient sex, age (61 and 63 years), time to revision (30 and 41 months), implant size (54 mm and 52 mm), and porosity (72% and 60%) (p > 0.152). There was no difference in visual bony attachment (p = 0.209). Histological analysis showed greater bone ingrowth in 3D-printed implants (p < 0.001), with mean bone attachment of 63% (SD 28%) and 37% (SD 20%), respectively. This was observed for all the outcome measures. Conclusion. This was the first study to investigate osseointegration in retrieved 3D-printed acetabular implants. Greater bone ingrowth was found in 3D-printed implants, suggesting that better osseointegration can be achieved. However, the influence of specific surgeon, implant, and patient factors needs to be considered. Cite this article: Bone Joint Res 2021;10(7):388–400


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 36 - 36
7 Jun 2023
Hothi H Henckel J Di Laura A Skinner J Hart A
Full Access

3D printing acetabular cups offers the theoretical advantage of enhanced bony fixation due to greater design control of the porous implant surfaces. Analysing retrieved 3D printed implants can help determine whether this design intent has been achieved. We sectioned 14 off-the-shelf retrieved acetabular cups for histological analysis; 7 cups had been 3D printed and 7 had been conventionally manufactured. Some of the most commonly used contemporary designs were represented in both groups, which were removed due to either aseptic loosening, unexplained pain, infection or dislocation. Clinical data was collected for all implants, including their age, gender, and time to revision. Bone ingrowth was evaluated using microscopic assessment and two primary outcome measures: 1) bone area fraction and 2) extent of bone ingrowth. The additively manufactured cups were revised after a median (IQR) time of 24.9 months (20.5 to 45.6) from patients with a median (IQR) age of 61.1 years (48.4 to 71.9), while the conventional cups had a median (IQR) time to revision of 46.3 months (34.7 to 49.1, p = 0.366) and had been retrieved from patients with a median age of 66.0 years (56.9 to 68.9, p = 0.999). The additively and conventionally manufactured implants had a median (IQR) bone area fraction of 65.7% (36.4 to 90.6) and 33.9% (21.9 to 50.0), respectively (p < 0.001). A significantly greater amount of bone ingrowth was measured into the backside of the additively manufactured acetabular cups, compared to their conventional counterparts (p < 0.001). Bone occupied a median of 60.0% and 5.7% of the porous depth in the additively manufactured and conventional cups, respectively. 3D printed components were found to achieve a greater amount of bone ingrowth than their conventionally manufactured counterparts, suggesting that the complex porous structures generated through this manufacturing technique may encourage greater osteointegration


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 7 - 7
1 Oct 2018
Tanzer M
Full Access

Introduction. Porous surfaces developed over the past decades have been shown to promote tissue ingrowth. Hydroxyapatite (HA) coatings have been added to these porous coatings in an attempt to further augment bone ingrowth. The development of additive manufacturing techniques has allowed for precision in building these complex porous structures. The effect of supplemental HA coatings on these new surfaces is unclear. The purpose of this study is to evaluate the biological fixation of a novel 3D printed porous implant in a canine model. In addition, we evaluated the effect of different HA coatings on this 3D printed implant. Methods. A canine transcortical model was used to evaluate the performance of three different laser rapid manufacturing (LRM) Ti6Al4V cylindrical implants (5.2 mm diameter, 10mm length): LRM with precipitated hydroxyapatite (P-HA), LRM with plasma sprayed hydroxyapatite (PS-HA), and a hydroxyapatite-free control (No-HA). The implants were 50–60% porous with a mean pore size of 450 μm and have a random interconnected architecture with irregular pore sizes and shapes that are designed based on the structure of cancellous bone. A lateral approach to the femoral diaphysis was used to prepare 5 mm unicortical, perpendicular drill holes in 12 canines. One of each implant type was press-fit into each femur. The femora were harvested at both 4 and 12 weeks post implantation, radiographed and prepared for either mechanical push-out testing to assess the shear strength of the bone-implant interface (left femora, N=6) or for histological processing (right femora, N=6). An un-paired Student's t-test was used to compare statistical significance between the 4 and 12-week results, as well as differences due to implant type; p<0.05 was considered significant. Results. The post-mortem contact radiographs demonstrated substantial condensation of bone around the implants at both 4 and 12 weeks. Bone ingrowth in the canine femora was observed in all implants, with and without HA, at both time periods under backscattered SEM. The mean extent of bone ingrowth at 4 weeks for no-HA, P-HA, and PS-HA implants was 41.5% (95% CI 32.5 to 50.6), 51.0% (95% CI 45.2 to 56.8) and 53.2% (95% CI 41.6 to 64.7), respectively. The mean extent of bone ingrowth at 12 weeks for no-HA, P-HA, and PS-HA implants was 64.4% (95% CI 61.5 to 67.3), 59.9% (95% CI 51.9 to 67.8) and 64.9% (95% CI 58.2 to 71.6), respectively. There was no significant difference in the amount of bone ingrowth between the HA and non-HA coated implants at any of the time points. All the implants were successfully pushed out after 4 weeks of implantation. The mean shear strength from the push-out test at 4 weeks for the no-HA, P-HA, and PS-HA implants was calculated to be 21.6 MPa (95% CI 17.2 to 26.0), 20.7 MPa (95% CI 18.9 to 22.4), and 20.2 MPa (95% CI 16.3 to 24.2), respectively. At week 12, in two femora all three implant types had compressive failure before rupture of the bone-implant interface with a load of over 2000N. This suggests that the values of shear strength were higher than those calculated from the successful tests at 12 weeks. The mean shear strength for the remaining no-HA, P-HA and PS-HA implants at 12 weeks was calculated to be 39.9 MPa (95% CI 29.8 to 50.9), 33.7 MPa (95% CI 26.3 to 41.2), and 36.0 MPa (95% CI 29.53 to 42.4), respectively. For all implants, the mean shear strength at 12 weeks was statistically significantly greater than at 4 weeks (p<0.05). There was no significant difference in the shear strength between HA coated and non-HA coated implants at 4 or 12 weeks. Conclusion. At 4 and 12 weeks, all non-HA coated LRM Ti6Al4V implants consistently exhibited very high bone ingrowth and mechanical shear strength in the canine model. These results demonstrate that this novel additive manufactured porous implant promoted biological fixation in a canine model. There was no significant improvement in the extent of bone ingrowth with the addition of HA. This is in agreement with the literature indicating that topography is the dominant factor governing bone apposition to hydroxyapatite-coated implants. It is likely that in this model, the morphologic features and roughness of the surface of the LRM implants stimulated osteoblastic activity, so that the addition of HA had a non-significant effect


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 4 - 4
23 Jun 2023
Gross A Safir O Kuzyk P
Full Access

Pelvic discontinuity is a separation through the acetabulum with the ilium displacing superiorly and the ischium/pubis displacing inferiorly. This is a biomechanically challenging environment with a high rate of failure for standard acetabular components. The cup-cage reconstruction involves the use of a highly porous metal cup to achieve biological bone ingrowth on both sides of the pelvic discontinuity and an ilioischial cage to provide secure fixation across the discontinuity and bring the articulating hip center to the correct level. The purpose of this study was to report long term follow up of the use of the cup-cage to treat pelvic discontinuity. All hip revision procedures between January 2003 and January 2022 where a cup-cage was used for a hip with a pelvic discontinuity were included in this retrospective review. All patients received a Trabecular Metal Revision Shell with either a ZCA cage or TMARS cage (Zimmer-Biomet Inc.). Pelvic discontinuity was diagnosed on pre-operative radiographs and/or intraoperatively. Kaplan-Meier survival analysis was performed with failure defined as revision of the cup-cage reconstruction. Fifty-seven cup-cages in 56 patients were included with an average follow-up of 6.25 years (0.10 to 19.98 years). The average age of patients was 72.09 years (43 to 92 years) and 70.2% of patients were female. The five year Kaplan-Meier survival was 92.0% (95% CI 84.55 to 99.45) and the ten year survival was 80.5% (95% CI 58.35 to 102.65). There were 5 major complications that required revision of the cup-cage reconstruction (3 infections and 2 mechanical failures). There were 9 complications that required re-operation without revision of the cup-cage reconstruction (5 dislocations, 3 washouts for infection and one femoral revision for aseptic loosening). In our hands the cup-cage reconstruction has provided a reliable tool to address pelvic discontinuity with an acceptable complication rate


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 378 - 385
1 Apr 2019
García-Rey E Carbonell-Escobar R Cordero-Ampuero J García-Cimbrelo E

Aims. We previously reported the long-term results of the cementless Duraloc-Profile total hip arthroplasty (THA) system in a 12- to 15-year follow-up study. In this paper, we provide an update on the clinical and radiological results of a previously reported cohort of patients at 23 to 26 years´ follow-up. Patients and Methods. Of the 99 original patients (111 hips), 73 patients (82 hips) with a mean age of 56.8 years (21 to 70) were available for clinical and radiological study at a minimum follow-up of 23 years. There were 40 female patients (44 hips) and 33 male patients (38 hips). Results. All acetabular and femoral components were well fixed and showed signs of bone ingrowth. Nine acetabular components were revised due to wear-osteolysis-related problems and four due to late dislocation. The probability of not having component revision at 25 years was 83.2% (95% confidence interval (CI) 74.5 to 91.8; number at risk 41). Acetabular osteolysis was observed in ten hips. The mean femoral head penetration was 1.52 mm (. sd. 0.8) at 15 years and 1.92 mm (. sd. 1.2) at 25 years. Receiver operating characteristic (ROC) analysis revealed that mean femoral penetration with a value of 0.11 mm/year or more was associated with the appearance of osteolysis. The 25-year Kaplan–Meier survival with different endpoints was 89.9% for acetabular osteolysis (95% CI 83.3 to 96.5), 92.1% for proximal femoral osteolysis (95% CI 86.1 to 98.2), and 75.5% for femoral osteopenia (95% CI 66.5 to 84.5). Conclusion. The Duraloc-Profile THA system showed excellent long-term bone fixation. Nevertheless, monitoring is recommended in order to detect wear and late dislocations in this population that was relatively young at the time of surgery. Cite this article: Bone Joint J 2019;101-B:378–385


Bone & Joint Open
Vol. 4, Issue 2 | Pages 79 - 86
10 Feb 2023
McLaughlin JR Johnson MA Lee KR

Aims

The purpose of this study is to report our updated results at a minimum follow-up of 30 years using a first generation uncemented tapered femoral component in primary total hip arthroplasty (THA).

Methods

The original cohort consisted of 145 consecutive THAs performed by a single surgeon in 138 patients. A total of 37 patients (40 hips) survived a minimum of 30 years, and are the focus of this review. The femoral component used in all cases was a first-generation Taperloc with a non-modular 28 mm femoral head. Clinical follow-up at a minimum of 30 years was obtained on every living patient. Radiological follow-up at 30 years was obtained on all but four.


Bone & Joint Open
Vol. 3, Issue 12 | Pages 991 - 997
23 Dec 2022
McPherson EJ Stavrakis AI Chowdhry M Curtin NL Dipane MV Crawford BM

Aims

Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects.

Methods

We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 21 - 21
1 Aug 2018
Zhou Y
Full Access

Failed ingrowth and subsequent separation of revision acetabular components from the inferior hemi-pelvis constitutes a primary mode of failure in revision total hip arthroplasty (THA). Few studies have highlighted other techniques than multiple screws and an ischial flange or hook of cages to reinforce the inferior fixation of the acetabular components, nor did any authors report the use of porous metal augments in the ischium and/or pubis to reinforce inferior fixation of the acetabular cup. The aims of this study were to introduce the concept of inferior extended fixation into the ischium and/or pubis during revision total hip arthroplasty, and to answer the following questions: (1) what are early clinical outcomes using inferior extended fixation and (2) what are the radiographic outcomes of hips revised with inferior extended fixation?. Patients who underwent revision THA utilizing the surgical technique of inferior extended fixation with porous metal augments secured in the ischium and/or pubis in a single institution from 2014 to 2016 were reviewed. Twenty-four patients were initially identified, and 16 patients were included based on the criteria of minimum 18 months clinical and radiographic follow-up. The median HHS, as well as the SF-12 physical and mental components improved significantly at the latest follow-up (p<0.001). The WOMAC global score decreased significantly at the latest follow-up (p<0.001). All constructs were considered to have obtained bone ingrowth fixation. Early follow-up of patients reconstructed with porous metal augments using the inferior extended fixation surgical technique demonstrated satisfactory clinical outcomes, restoration of the center of rotation and adequate biological fixation


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 624 - 628
1 May 2010
Macheras GA Kateros K Koutsostathis SD Tsakotos G Galanakos S Papadakis SA

Between November 1997 and December 2000 we performed 27 total hip replacements in 22 patients with high congenital dislocation of the hip using porous tantalum monoblock acetabular components implanted in the true acetabular bed. Clinical and radiological evaluation was performed at regular intervals for a mean of 10.2 years (8.5 to 12). The mean Harris Hip Score improved from 48.3 (15 to 65) pre-operatively to 89.5 (56 to 100) at the final follow-up. The mean Oxford Hip Score was 49.5 (35 to 59) pre-operatively and decreased to 21.2 (12 to 48) at one year and 15.2 (10 to 28) at final follow-up. Migration of the acetabular component was assessed with the EBRA software system. There was a mean migration of 0.68 mm (0.49 to 0.8) in the first year and a mean 0.89 mm (0.6 to 0.98) in the second year, after excluding one initial excessive migration. No revision was necessary for any reason, no acetabular component became loose, and no radiolucent lines were observed at the final follow-up. The porous tantalum monoblock acetabular component is an implant offering adequate initial stability in conjunction with a modulus of elasticity and porosity close to that of cancellous bone. It favours bone ingrowth, leading to good mid-term results


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1458 - 1463
1 Nov 2013
Won S Lee Y Ha Y Suh Y Koo K

Pre-operative planning for total hip replacement (THR) is challenging in hips with severe acetabular deformities, including those with a hypoplastic acetabulum or severe defects and in the presence of arthrodesis or ankylosis. We evaluated whether a Rapid Prototype (RP) model, which is a life-sized reproduction based on three-dimensional CT scans, can determine the feasibility of THR and provide information about the size and position of the acetabular component in severe acetabular deformities. THR was planned using an RP model in 21 complex hips in five men (five hips) and 16 women (16 hips) with a mean age of 47.7 years (24 to 70) at operation. An acetabular component was implanted successfully and THR completed in all hips. The acetabular component used was within 2 mm of the predicted size in 17 hips (80.9%). All of the acetabular components and femoral stems had radiological evidence of bone ingrowth and stability at the final follow-up, without any detectable wear or peri-prosthetic osteolysis. The RP model allowed a simulated procedure pre-operatively and was helpful in determining the feasibility of THR pre-operatively, and to decide on implant type, size and position in complex THRs. Cite this article: Bone Joint J 2013;95-B:1458–63


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 359 - 364
1 Apr 2024
Özdemir E de Lange B Buckens CFM Rijnen WHC Visser J

Aims

To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time.

Methods

We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 385 - 392
24 May 2023
Turgeon TR Hedden DR Bohm ER Burnell CD

Aims

Instability is a common cause of failure after total hip arthroplasty. A novel reverse total hip has been developed, with a femoral cup and acetabular ball, creating enhanced mechanical stability. The purpose of this study was to assess the implant fixation using radiostereometric analysis (RSA), and the clinical safety and efficacy of this novel design.

Methods

Patients with end-stage osteoarthritis were enrolled in a prospective cohort at a single centre. The cohort consisted of 11 females and 11 males with mean age of 70.6 years (SD 3.5) and BMI of 31.0 kg/m2 (SD 5.7). Implant fixation was evaluated using RSA as well as Western Ontario and McMaster Universities Osteoarthritis Index, Harris Hip Score, Oxford Hip Score, Hip disability and Osteoarthritis Outcome Score, 38-item Short Form survey, and EuroQol five-dimension health questionnaire scores at two-year follow-up. At least one acetabular screw was used in all cases. RSA markers were inserted into the innominate bone and proximal femur with imaging at six weeks (baseline) and six, 12, and 24 months. Independent-samples t-tests were used to compare to published thresholds.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 193 - 200
23 Apr 2024
Reynolds A Doyle R Boughton O Cobb J Muirhead-Allwood S Jeffers J

Aims

Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular cups during total hip arthroplasty (THA). This study aims to quantify the accuracy and precision of manual impaction strikes during the seating of an acetabular component. This understanding aims to help improve impaction surgical techniques and inform the development of future technologies.

Methods

Posterior approach THAs were carried out on three cadavers by an expert orthopaedic surgeon. An instrumented mallet and introducer were used to insert cementless acetabular cups. The motion of the mallet, relative to the introducer, was analyzed for a total of 110 strikes split into low-, medium-, and high-effort strikes. Three parameters were extracted from these data: strike vector, strike offset, and mallet face alignment.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 306 - 314
3 May 2023
Rilby K Mohaddes M Kärrholm J

Aims

Although the Fitmore Hip Stem has been on the market for almost 15 years, it is still not well documented in randomized controlled trials. This study compares the Fitmore stem with the CementLeSs (CLS) in several different clinical and radiological aspects. The hypothesis is that there will be no difference in outcome between stems.

Methods

In total, 44 patients with bilateral hip osteoarthritis were recruited from the outpatient clinic at a single tertiary orthopaedic centre. The patients were operated with bilateral one-stage total hip arthroplasty. The most painful hip was randomized to either Fitmore or CLS femoral component; the second hip was operated with the femoral component not used on the first side. Patients were evaluated at three and six months and at one, two, and five years postoperatively with patient-reported outcome measures, radiostereometric analysis, dual-energy X-ray absorptiometry, and conventional radiography. A total of 39 patients attended the follow-up visit at two years (primary outcome) and 35 patients at five years. The primary outcome was which hip the patient considered to have the best function at two years.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 57 - 57
1 Jan 2018
Sugano N Hamada H Takao M Sakai T Nakamura N
Full Access

The purposes of this study were to review retrospectively the 10-year outcome of cementless total hip arthroplasty (THA) using an active robot system in the femoral canal preparation for an anatomic short stem and navigation in the cup placement through a mini incision posterior approach. We reviewed all patients who underwent THA with this procedure in 53 hips between 2004 and 2007. There were no intraoperative fracture nor navigation- or robotic-related complications. All implant sizes were same as planned ones. All cases were followed up at least two years and all implants showed bone ingrowth stable according to the Engh's criteria. After then, six patients died of unrelated causes. Two patients (three hips) could not come to the 10-year follow-up examination. The remaining 44 hips were followed for 10 to 12 years (11 years on average). There is no dislocation. The average JOA hip score improved from 48 preoperatively to 96 at the final examination. On the postoperative x-ray measurements, the average cup radiographic inclination was 39° and the radiographic anteversion was 14°. There was no stem which showed more than 2° of varus or valgus alignment. There was no case who showed more than 5mm of limb length discrepancy. Postoperative CT images of 38 hips were obtained at 2 weeks. After matching the coordinates of the pelvis and femur with the preoperative planning, we got very small differences in alignment parameters between the measured values and the planed ones. The difference differences between the plan and measured values were −0.1° in cup inclination, −1.4° in cup anteversion, stem 0.5° in coronal alignment, 0.6° in stem sagittal alignment, and −1.6° in stem anteversion, respectively. We conclude that our robotic femoral preparation for a short anatomical stem and navigated cup placement thru a mini-posterior approach was safe and feasible without affecting the accuracy of the procedure. There were no long term adverse effect of the procedure


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1110 - 1117
12 Oct 2022
Wessling M Gebert C Hakenes T Dudda M Hardes J Frieler S Jeys LM Hanusrichter Y

Aims

The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants.

Methods

A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 327 - 332
1 Mar 2009
García-Rey E García-Cimbrelo E Cordero-Ampuero J

We reviewed 111 hemispherical Duraloc series-500 acetabular components with a minimum follow-up of 12 years. The mean clinical and radiological follow-up was 13.4 years (12 to 15). A Profile hydroxyapatite-coated anatomical femoral component was used in each case. Six patients had a late dislocation, for whom the polyethylene liner was exchanged. Each acetabular component was well fixed and all femoral components showed signs of bone ingrowth. The mean rate of femoral head penetration was 0.10 mm/year (0.021 to 0.481). The probability of not developing femoral cortical hypertrophy and proximal osteopenia by 12 years was 80.2% (95% confidence interval, 72.7 to 87.6) and 77.5% (95% confidence interval, 69.7 to 85.2), respectively. Despite these good clinical results, further follow-up is needed to determine whether these prostheses will loosen with time


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 3 - 3
1 Jun 2017
Song W Chen L Bergum C Zhou Z Shen M Ren W Yu X Markel D
Full Access

Bone ingrowth is desired with uncemented hip implants. Infection is clearly undesirable. We have worked on developing a nanofiber coating for implants that would enhance bone formation while inhibiting infection. Few studies have focused on developing an implant surface nanofiber (NF) coating to prevent infection and enhance osseointegration by local drug release. In this study, coaxial doxycycline (Doxy)-doped polycaprolactone/polyvinyl alcohol (PCL/PVA) Nanofibers were directly deposited on the titanium (Ti) implant surface during electrospinning. The interaction of loaded Doxy with both PVA and PCL NFs was characterized by Raman spectroscopy. The bonding strength of Doxy-doped NF coating on Ti implants was confirmed by a stand single-pass scratch test. The improved implant osseointegration by PCL/PVA NF coatings in vivo was confirmed by scanning electron microscopy, histomorphometry and micro computed tomography at 2, 4 and 8 weeks after implantation. The bone contact surface (%) changes of NF coating group (80%) is significantly higher than that of no NF group (< 5%, p<0.05). Finally, we demonstrated that Doxy-doped NF coating effectively inhibited bacterial infection and enhanced osseointegration in an infected (Staphylococcus aureus) tibia implantation rat model. Doxy released from NF coating inhibited bacterial growth up to 8 weeks in vivo. The maximal push-in force of Doxy-NF coating (38 N) is much higher than that of NF coating group (6.5 N) 8 weeks after implantation (p<0.05), which was further confirmed by quantitative histological analysis and micro computed tomography. These findings indicate that coaxial PCL/PVA NF coating doped with Doxy and/or other drugs have great potential in enhancing implant osseointegration and preventing infection


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 56 - 56
1 Jan 2018
Macheras G Lepetsos P Anastasopoulos P Tzefronis D Galanakos S Poultsides L
Full Access

Porous tantalum is a highly osteoinductive biomaterial, initially introduced in orthopedics in 1997, with a subsequent rapid evolution of orthopedic applications. The use of porous tantalum for the acetabular component in primary total hip arthroplasty (THA) has demonstrated excellent short-term and mid-term results. However, long term data are scarce. The purpose of this prospective study is to report the long-term clinical and radiological outcome following use of an uncemented porous tantalum acetabular component in primary THA with a minimum follow-up of 17.5 years, in a previously studied cohort of patients. We prospectively followed 128 consecutive primary THAs in 140 patients, between November 1997 and June 1999. A press-fit porous tantalum monoblock acetabular component was used in all cases. The presence of initial gaps in the polar region, as sign of incomplete seating of the monoblock cup, was assessed on the immediate postoperative radiographs. All patients were followed clinically and radiographically at 6, 12, and 24 weeks and 12 months and then at 2, 5, 8, 10, and 19 years, for a mean of 18.1 years (range 17.5 – 19 years). Periacetabular dome gap filling, acetabular cup migration and polyethylene wear were assessed by the EBRA digital measurement system, until 2 years postoperatively. Mean age of patients at the time of operation was 60.4 years old (range 24 – 72). Harris hip score, Oxford Hip Score and range of motion (ROM) were dramatically improved in all cases (p < 0.001). In the initial postoperative radiographs, periacetabular dome gaps were observed in the 15% of cases, and were progressively filled within 6 months. In 2 years postoperatively, the mean component migration, as shown in EBRA study, was 0.67 mm. At last follow-up, all cups were radiographically stable with no evidence of migration, gross polyethylene wear, progressive radiolucencies, osteolytic lesions or acetabular fractures. The survivorship with re-operation for any reason as end point was 92.8%, whereas the survivorship for aseptic loosening as an end point was 100%. Upon visual inspection, two removed acetabular components due to recurrent dislocation and infection, respectively, showed extensive bone osseointegration. In our primary THA series, the porous tantalum monoblock cup demonstrated excellent clinical and radiographic outcomes with no failures because of aseptic loosening at a mean follow-up of 18.1 years. Porous tantalum acetabular components showed excellent initial stability, produced less wear debris and revealed a great potential for bone ingrowth. Due to its unique osteoinductive properties and elliptical shape, porous tantalum monoblock cups have demonstrated superior short and long-term survivorship compared to other press fit prostheses in the market