Introduction. Total knee arthroplasty (TKA) implant systems offer a range of sizes for orthopaedic surgeons to best mimic the patient's anatomy and restore joint function. From a biomechanical perspective, the challenge on the TKA implants is affected by two factors: design geometry and in vivo load. Larger geometry typically means more robust mechanical structure, while higher in vivo load means greater burden on the artificial joint. For an implant system, prosthesis geometry is largely correlated with implant size, while in vivo load is affected by the patient's demographics such as weight and height. Understanding the relationships between implant size and patients' demographics can provide useful information for new prosthesis design, implant test planning, and clinical data interpretation. Utilizing a manufacturer supported clinical database, this study examined the relationships between TKA patient's
Objective. This paper aims to analyze the kinetics of the over-ground wheel-type
Aim. Vancomycin is frequently used for bone and joint infections (BJI) because of the main role of Gram-positive bacteria as potential causal agents. It is crucial to achieve optimal vancomycin plasma concentrations since the first day to maximize treatment clinical and microbiological efficacy. The aim was to describe the patients’ profile that are more likely to achieve an optimal pharmacokinetic/pharmacodynamics (PK/PD) vancomycin target in the first therapeutic drug monitoring (TDM) sample. Methods. Retrospective study (March 2018-January 2022) in a university hospital including all patients treated with vancomycin for a BJI and undergoing TDM. Initial dose (1g/8-12h) was selected by the responsible clinician. Vancomycin plasma concentrations were obtained pre-dose (Cmin,ss) and 60-minutes after the infusion on day 2 of treatment. Global exposure measured by the area under the curve of plasma concentrations during 24h (AUC024h) was estimated using a bicompartmental PK model. An AUC024h/CMI=400–600mg*h/L was considered optimal, <400 infratherapeutic and >600 supratherapeutic, based on recent guidelines, and patients were classified into these 3 groups. A value of CMI=1 mg/L was considered, following guidelines recommendations. Categorial data: percentages and quantitative data as mean (standard deviation). Results. Ninety-five patients were included: 22(23.2%), 43(45.3%) and 30(31.6%) presented an infratherapeutic, optimal and supratherapeutic PKPD target, respectively. Medium age was 75,8(13,5) in the supratherapeutic group versus 57,2(16,3) in the infratherapeutic group. Weight (kg) was higher in the infratherapeutic group 80,8(18,4) versus 66,8(15,5) in the supratherapeutic group. Vancomycin dose (mg/kg/d) was 43,5(12,4) in the supratherapeutic group versus 34,5(10,8) in the infratherapeutic group. There were 17(56,7) patients who received 1g/8h of vancomycin in the supratherapeutic group and 6 (27,3) in the infratherapeutic group. Baseline glomerular filtration rate (BGF (CKD-EPI) (mL/min/1.73m2) was 71,5(20,1) in the supratherapeutic group and 100,0 (19,9) in the infratherapeutic group. The AUC24h/CMI was 788,0(186,1) in the supratherapeutic group and 323,7(55,4) in the infratherapeutic group. Significant differences observed in age,
Aim. The use of bone substitutes such as calcium sulfate (CaSO4) and hydroxyapatite with local antibiotics are crucial in the treatment of osteomyelitis. They allow the treatment of the dead space and locally provide large concentrations of antibiotics. However, it is unknown whether use of local vancomycin may elute and influence on vancomycin plasma levels. The aim of this study is to assess whether the addition of vancomycin to CaSO4 with hydroxyapatite may increase vancomycin plasma concentrations in in patients with osteomyelitis and therefore alter dosage adjustments. Method. The present study investigates the vancomycin plasma concentrations at 72–94 h post-surgery after the application of local vancomycin within CaSO4 (660mg vancomycin/10cc) and hydroxyapatite bone substitute in patients treated with empiric intravenous vancomycin and surgically treated for osteomyelitis. Vancomycin plasma concentrations were analyzed in twelve patients with osteomyelitis surgically treated with local release of vancomycin by CaSO4 and hydroxyapatite and undergoing therapeutic drug monitoring (TDM) of their vancomycin plasma concentrations as it is routinely done in our hospital. From 2019 to 2022, demographic data, microbiology, type of osteomyelitis, amount of local vancomycin applied, alteration of renal function, and vancomycin levels were retrospectively analyzed. Results. Twelve patients were included: 9(75%) were men. Median (range) demographic and clinical data: age: 51(26–67) years; body mass index: 27.7(18–46.4) kg/m2;baseline serum creatinine: 0.85 (0.7–1.24)mg/dl and 5(41.7%) with and glomerular filtration rate < 90ml/min(CPD-EPI, ml/min). Most frequently isolated microorganisms were Staphylococci (58%). Seven (54%) patients were classified as Cierny-Mader Osteomyelitis type III, 3(23%) as type IV and 2(23%) as type I. Treatment data: initial dose of vancomycin: 1g/8h in 9(75.0%) and 1g/12h in 3(25%) patients, total daily dose/
Introduction. When evaluating the biomechanical performance of a total knee arthroplasty (TKA) implant design, device companies are usually required to select the “worst case scenario” for testing by the regulatory bodies. However, most test standards (e.g., ASTM, ISO) do not explicitly specify how the “worst case” should be determined. It is quite often that an extreme size (the smallest or the largest) in a system is taken as the “worst case” size. The smallest size is sometimes selected under the rationale that it has the smallest geometry thus the weakest mechanical structure. While the largest size is sometimes selected under the rationale that it is used on the biggest patients associated with the highest loads. However, implant geometry and in vivo load are two compounding factors that together determine the implant's biomechanical challenge. As the result, the true “worst case” must be determined considering both factors, and the choice could be design-specific. This study evaluated the femorotibial contact stress of a TKA implant system, and demonstrated that the extreme sizes may not simply be the “worst case”. Methods. The femorotibial contact stress of a posterior-stabilizing TKA implant system was assessed using finite element analysis. Multiple sizes ranging from size 0 to 6 were analyzed. For each size, the CAD models were assembled at knee extension. A load equivalent to 4 times of patient
Introduction. In a previous study of subjects with no history of lower extremity injury or disease we found a linear relationship between
Introduction. Femoral shaft fractures in children is a serious injury that needs hospitalization, with a high prevalence in the age group 6–8 years old. Various treatment options are available and with a comparable weight of evidence. Submuscular plating provides a dependable solution, especially in length-unstable fractures and heavier kids. We present a novel technique to facilitate and control the reduction intraoperatively, which would allow for easier submuscular plate application. Materials and Methods. We have retrospectively reviewed four boys and three girls; all were operated in one centre. Polyaxial clamps and rods were applied to the sagittally-oriented bone screws, the reduction was done manually, and the clamps were tightened after achieving the proper alignment in the anteroposterior and lateral fluoroscopy views. The submuscular plate was applied as described, then clamps and bone screws were removed. Results. The mean age at surgery was 13 years (range, 9–14). The mean
INTRODUCTION:. Clinical densitometry studies indicate that following TKR implantation there is loss of bone mineral density in regions around the implant. Bone density below the tibial tray has been reported to decrease 36% at eight years after TKR. This bone loss (∼5%/year) is substantially greater than osteoporosis patients in the same age group (∼1–2%/year) and could contribute the loss of mechanical support provided by the peri-implant leading to loosening of components in the long term. High patient mass and body mass index have also been implicated in increased loosening rates, and was thought to be due to high stress or strain on the tibial constructs. These findings suggest that peri-implant bone strain may be affected by time in service and patient factors such as body mass. The goal of this project was to assess the proximal tibial bone strain with biomechanical loading using en bloc retrieved TKR tibial components. Note that the implants were not obtained from revision surgery for a loose implant, but rather after death; thus the implants can be considered to be successful for the lifetime of the patient. We asked two research questions, guided by the clinical and laboratory observations: (1) are the peri-implant bone strain magnitudes for cemented tibial components greater for implants with more time in service and from older donors?, (2) is tibial bone strain greater for constructs from donors with high
INTRODUCTION. The increasing incidence of periprosthetic femoral fractures (PFF) after total hip arthroplasty presents growing concerns due to challenges in treatment and increased mortality. PFF are often observed when the prosthesis is implanted in varus, especially with blade-type stems. To help elucidate its impact on the PFF risk, the specific research question is: What is the effect of misalignment of a blade-type stem (resulting in down-sized prosthesis) on 1)the distribution and magnitude of cortical stresses and 2)implant-bone micromotion. METHOD. We developed two finite element models consisting of an average female femur implanted within a generic blade-type stem prosthesis, (i)in neutral alignment, and (ii)oriented in 5° of varus, coupled with corresponding down-sizing of the prosthesis. Each model consisted of 1.1million elements, while the average mesh length at the implant-bone interface was 0.4mm. Elastic moduli of 15GPa(cortex), 150MPa(trabecular bone), and 121GPa(implant), and Poisson's ratio of 0.3 were assumed. The distal end was fixed and the interface was defined as a surface-to-surface contact with friction coefficients (dynamic 0.3; static 0.4). Walking and stair-climbing were simulated by loading the joint contact and muscle forces after scaling to the subjects’
To determine the effect of Dexamethasone on post-operative pain management in patients undergoing Total Knee Arthroplasty in terms of numerical pain rating scale and total opoid consumption. This Randomized Controlled Trail (RCT) was conducted for 02 years (7th September 2015 to 6th September 2017). All patients undergoing primary Unilateral Total Knee Replacement (TKR) for Osteoarthritis knee were included in the study. Patients with poor glycemic control (HbA1c > 7.6), Hepatic/Renal failure, corticosteroids/ Immunosuppression drug usage in the last 06 months, known psychiatric illnesses were excluded from the study. All patients were operated by consultant Orthopaedic surgeon under Spinal Anaesthesia and tourniquet control using medial para-patellar approach. Patients were randomly divided into 02 groups, A and B. 79 patients were placed in each group. Group A given 0.1mg/kg
There is high morbidity and mortality associated with infection following orthopaedic procedures. In accordance to local guidelines, most hospitals follow a set protocol for surgical prophylaxis, which expects a compliance rate of 100%. A new protocol was introduced to the orthopaedic department of a teaching hospital in August 2013, changing from a cephalosporin, with potential C. difficile risk, to teicoplanin and gentamicin, within 30 minutes of incision. Our aim was to audit how well the protocol was followed across 3 different time periods. Data was collected for 3 different time periods following the introduction of the new protocol (August-November 2013, April-May 2014 & November 2014) on the choice of antibiotic. Both elective and trauma cases were included. After each cycle, the data was presented to the orthopaedic surgical and anaesthetic departments to raise awareness and draw attention to the antibiotic prophylaxis posters in theatre. The 1st audit cycle (n=30) indicated that there was 0% compliance with the current protocol and 100% compliance with the previous protocol. The 2nd audit cycle (n=27) indicated that 0% complied with the current protocol, 54% complied with the previous protocol and that there was a combination of both protocols being used in 46% of the patients. Finally the 3rd audit cycle (n=33) indicated a 100% compliance rate in terms of antibiotic choice. However, only 9% were given the appropriate dose according to
Introduction. The popliteus tendon is a component of the posterolateral corner of the knee, which controls the external rotation of the tibia. In our clinical practice, the femoral footprint of the popliteus tendon is occasionally excised as the bone is resected during total knee arthroplasty (TKA). Although the excision of the popliteus tendon femoral footprint could result in excessive external rotation of the tibia and may have adverse effects on the long-term outcomes of TKA, little attention has been paid to the popliteus tendon femoral footprint during TKA. The purpose of the present study is to assess the frequency of the excision and its associated risk factors. Methods. One hundred eleven knees of 90 patients with varus knee osteoarthritis who underwent primary TKA were included in the present study. There were 13 males and 77 females, and their average age was 74 years. The NexGen knee replacement system (Zimmer, Warsaw, IN, USA) was used in all cases. The excision of the popliteus tendon femoral footprint was intraoperatively evaluated, and the patients were divided into three groups depending on the status of the femoral footprint, i.e., the preserved, partially excised, and completely excised groups. The thickness of the distal femoral osteotomy, femoral component size, and background data including height,
One of the main concerns about the currently available simulators is that the TKA is driven in a “passive way” for assessment. For the simulators for the wear assessment, the tibio-femoral relative motion is automatically made by using the knee kinematics and loading profile of a normal gait. As for the simulators for the kinematics and kinetics assessment of TKA, also the predicted loading profiles introduced from the theoretical model are applied as the input data to drive the simulator. It should be noted that the human joints are driven by the muscles' forces and external loads, and their kinematics and kinetics are the “outcome”. This being so, the knee simulator should be driven by the muscles' forces and upon these conditions the TKA performance is to be assessed. Some other concerns about the current simulations are as follows. The effects of hip joint motion are not taken into account. The upper
Introduction. In THA of DDH cases, sometimes shortening and/or derotational subtrochanteric osteotomy is required, for cases with high hip center and/or high anteversion. Initial fixation is one of the most important problems after subtrochanteric osteotomy. To prevent rotational displacement V-osteotomy or step osteotomy is often used. Even though until the osteotomy part unites, additional fixation is required. When a stem with distal load transfer was used
Introduction. Our primary hypothesis was simple: does gait on a downhill gradient distinguish between types of knee arthroplasty? Our secondary hypotheses were these: are stride length and other kinematic variables affected by cruciate ligament integrity following knee arthroplasty?. Participants. Ethical approval was sought and gained prior to commencement of the study. 52 subjects were tested on the instrumented treadmill, 3 groups (UKA, TKA, and young healthy control) of 19, 14, and 19 respectively. The two high performing arthroplasty groups were recruited from a database of patient related outcome measures (PROMs) and were chosen based on high Oxford knee scores (OKS) with a minimum 12 months post hip arthroplasty. Gait Analysis. Gait performance was tested on a validated instrumented treadmill (Kistler Gaitway®, Kistler Instrument Corporation, Amherst NY)[22, 23]. The rear of the treadmill was ramped with 30 cm axle stands in order to create a 7 degree decline for downhill walking (figure 1). The speed was increased incrementally. Hof scaling and
Introduction. Ankle arthrodesis is a common treatment for destroyed ankle arthrosis with sacrificing the range of motion. On the other hand, total ankle arthroplasty (TAA) is an operation that should develop as a method keeping or improving range of motion (ROM); however, loosening and sinking of the implant have been reported in especially constrained designs of the implant. The concept of FINE TAA is the mobile bearing system (Nakashima Medical Co., Ltd, Okayama Japan) that can reduce stress concentration to implants. The purpose of this study is to evaluate the short-term results of FINE TAA. Objectives and Methods. We performed FINE TAA for osteoarthritis (OA) (2 ankles of 2 patients) and rheumatoid arthritis (RA) (4 ankles of 3 patients). All patients were female. The mean age of the patients was 71.4 years old at the operation. The mean follow-up period was 32.6 (range, 18–55) months. All patients were assessed for Japan Orthopedic Association (JOA) score and ROM in plantar flexion and dorsiflexion at the point of pre-operation and final follow-up. We evaluated radiolucent line, subsidence, and alignment of implants at the latest follow-up. Results. JOA score improved from 34.8 to 72.2 on average. ROM improved from 4.0 ± 5.5 º to 7.0 ± 4.5 º on average in plantar flexion and from 21.0 ± 17.0 º to 31.0 ± 16.0 º in dorsiflexion. One case underwent an ankle arthrodesis because of the implant loosening. This failed case was very obese (70 kg of
When a knee flex deeply, the posterior side of thigh and calf contact. The contact force is unignorable to estimate the load acting on a knee because the force generates extensional moment on the knee, and the moment might be about 20–80% of the flexional moment generated by a floor reacting force. Besides, the thigh-calf contact force varies so much even if the posture or the test subject are the same that it is hard to use the average value to estimate the knee load. We have assumed that the force might change not only by the individual physical size but also by a slight change of the posture, especially the angle of the upper body. Therefore we tried to create the estimation equation for the thigh-calf contact force using both anthropometric sizes and posture angles as parameters. The objective posture was kneeling, both plantarflexing and dorsiflexing the ankle joint. Test subjects were 10 healthy males. They were asked to sit on a floor with kneeling, and to tilt their upper body forward and backward. The estimation equations were created as the linear combinations of the parameters, determining the coefficient as to minimize the root mean square errors. We used the parameters as explanatory variables which could be divided into posture parameters and individual parameters. Posture parameters included the angle of upper body, thigh and lower thigh. Individual parameters included height, weight, axial and circumferential lengths of thigh and lower thigh. The magnitude of the force was normalized by a
Background. We would like to analyze the risk factors of no thumb test among knee alignment tests during total knee arthroplasty surgery. Methods. The 156 cases of total knee arthroplasty by an operator from October 2009 to April 2010 were analyzed according to preoperative indicators including
Background. Total ankle arthroplasty (TAA) is an alternative to ankle arthrodesis, replacing the degenerated joint with a mechanical motion-preserving alternative. Implant loosening remains a primary cause of TAA revision, and has been associated with wear-mediated osteolysis. Differing implant designs have a major influence on the wear performance of joint replacements. Providing a range of implant sizes allows surgeons a greater intra-operative choice for varying patient anatomy and potential to minimise wear. Minimal pre-clinical testing exists in the literature that investigates the effect of implant size on the wear behaviour. The aim of this study therefore was to investigate the effect of two different implant sizes on the wear performance of a TAA. Materials & Methods. Six ‘medium’ and six ‘extra small’ BOX® (MatOrtho Ltd, UK) TAA implants, of the same conceptual design and polyethylene insert thickness, were tested in a modified 6 station pneumatic knee simulator. 5 million cycles (Mc) of wear simulation were completed for each implant size, under kinematics aiming to replicate an ankle gait cycle (Figure 1) [1]. The simulator used had six degrees of freedom, of which four were controlled. The maximum axial load was 3150N, equivalent to 4.5 times
There are several concerns about the current simulators for TKA. First, the knee is flexed in a “passive way” under the condition of applying constant muscular tension forces. Second, the effects of hip joint motion are not taken into account. Thirdly, the external load for example, upper