Introduction.
There is great contemporary interest to provide treatments for knees with medial or medial plus patellofemoral arthritis that allow retention of the cruciate ligaments and the natural lateral compartment. Options for bicompartmental arthroplasty include custom implants, discrete compartmental implants and monoblock off-the-shelf implants. Each approach has potential benefits. The monoblock approach has the potential to provide a cost-efficient off-the-shelf solution with relatively simple surgical instrumentation and procedure. The purpose of this study was to determine if monoblock
Introduction. It is well known that total knee arthroplasty (TKA) does not preserve normal knee kinematics. This outcome has been attributed to alteration of soft-tissue balance and differences between the geometry of the implant design and the normal articular surfaces.
Unicompartmental knee arthroplasty (UKA) has been shown to have many benefits over conventional Total Knee Arthroplasty (TKA), but has also been shown to be technically difficult. In fact, technical error is the most common cause of premature failure in UKA. Bicompartmental arthroplasty (BKA) has the potential to perform like TKA with the benefits of UKA. We describe the initial experience with customized alignment guides and implants for UKA and BKA, manufactured based upon preoperative CT scan. Twenty three implants in 19 patients were implanted and followed for a minimum of three months postoperatively. Knee society scores and SF-12 scores were collected preoperatively and postoperatively. Radiographs were analyzed with image analysis software for malposition and loosening.INTRODUCTION
MATERIALS AND METHODS
Combined Partial Knee Arthroplasty (CPKA) is a promising alternative to Total Knee Arthroplasty (TKA) for the treatment of multi-compartment arthrosis. Through the simultaneous or staged implantation of multiple Partial Knee Arthroplasties (PKAs), CPKA aims to restore near-normal function of the knee, through retention of the anterior cruciate ligament and native disease-free compartment. Whilst PKA is well established, CPKA is comparatively novel and associated biomechanics are less well understood. Clinically, PKA and CPKA have been shown to better restore knee function compared to TKA, particularly during fast walking. The biomechanical explanation for this superiority remains unclear but may be due to better preservation of the extensor mechanism. This study sought to assess and compare extensor function after PKA, CPKA, and TKA. An instrumented knee extension rig facilitated the measurement extension moment of twenty-four cadaveric knees, which were measured in the native state and then following a sequence of arthroplasty procedures. Eight knees underwent medial Unicompartmental Knee Arthroplasty (UKA-M), followed by patellofemoral arthroplasty (PFA) thereby converting to medial
INTRODUCTION.
INTRODUCTION.