Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 23 - 23
1 Jan 2016
Mashiba T Mori M Yamamoto T
Full Access

Purpose. There is a large gap between UKA and TKA in terms of tissue preservation including bone stock and knee ligament. We have recently introduced bicompartmental UKA (Bi-UKA) to fill the gap and achieve more “physiological” knee than TKA. In this study, we report the short-term results of Bi-UKA. Subjects and Methods. Thirty knees in twenty-nine osteoarthritis patients who underwent Bi-UKA from December 2010 to December 2013 (6 males and 23 females, average age of 75) were clinically and radiologically evaluated with an average observation period of 19 months. The operative indications were (1)confirmed diagnosis of medial and lateral osteoarthritis or osteonecrosis with preserved status of patellofemoral joint; (2)range of knee flexion greater than 110°; (3)flexion contracture less than 20°; (4)clinically stable knee in the frontal and sagittal plane; (5)correctable knee deformity with fine knee congruency. In all cases, fixed type UKA was implanted through a tibia dependent cut using a spacer block. Zimmer Uni and TRIBRID UKA (Kyocera Medical Corporation) were implanted in 18 and 12 cases, respectively. Results. The mean JOA score improved significantly from 57 points preoperatively to 89 points postoperatively. With regard to ROM, the mean extension significantly improved from −6° to −1° (p<0.001), and the mean flexion was almost unchanged from 134° to 139°. Six knees achieved maximum flexion angles of more than 150°. The mean leg alignment was unchanged from 174.5° to 175.2°, although there were five knees in which alignment was corrected by more than 10° after the surgery. All implant alingnments were reasonably acceptable and particularly, the gaps of setting angle between medial and lateral components were quite small in lateral view radiograph. A only major postoperative complication we have experienced was a periprosthetic tibia fracture, which had been successfully treated with screw fixation. Discussion. Bi-UKA is a bone- and ligament-sparing procedure that may provide better knee function and patient satisfaction than does TKA. Complicated surgical procedure, relationship of placement position between medial and lateral prostheses, ligament balancing, and longer-term results remain subjects to be resolved. However, tibia dependent cut technique using spacer block was quite useful to improve the accuracy of implants positioning during Bi-UKA procedure. Our short-term results of Bi-UKA were well acceptable although there were a few complaints or complications. We would like to confirm the usefulness of this procedure and further establish the best indication by increasing the number of patients in the future


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 53 - 53
1 Feb 2021
Garner A Dandridge O Amis A Cobb J van Arkel R
Full Access

Combined Partial Knee Arthroplasty (CPKA) is a promising alternative to Total Knee Arthroplasty (TKA) for the treatment of multi-compartment arthrosis. Through the simultaneous or staged implantation of multiple Partial Knee Arthroplasties (PKAs), CPKA aims to restore near-normal function of the knee, through retention of the anterior cruciate ligament and native disease-free compartment. Whilst PKA is well established, CPKA is comparatively novel and associated biomechanics are less well understood. Clinically, PKA and CPKA have been shown to better restore knee function compared to TKA, particularly during fast walking. The biomechanical explanation for this superiority remains unclear but may be due to better preservation of the extensor mechanism. This study sought to assess and compare extensor function after PKA, CPKA, and TKA. An instrumented knee extension rig facilitated the measurement extension moment of twenty-four cadaveric knees, which were measured in the native state and then following a sequence of arthroplasty procedures. Eight knees underwent medial Unicompartmental Knee Arthroplasty (UKA-M), followed by patellofemoral arthroplasty (PFA) thereby converting to medial Bicompartmental Knee Arthroplasty (BCA-M). In the final round of testing the PKA implants were removed a posterior-cruciate retaining TKA was implanted. The second eight received lateral equivalents (UKA-L then BCA-L) then TKA. The final eight underwent simultaneous Bi-Unicondylar Arthroplasty (Bi-UKA) before TKA. Extensor efficiencies over extension ranges typical of daily tasks were also calculated and differences between arthroplasties were assessed using repeated measures analysis of variance. For both the medial and lateral groups, UKA demonstrated the same extensor function as the native knee. BCA resulted in a small reduction in extensor moment between 70–90° flexion but, in the context of daily activity, extensor efficiency was largely unaffected and no significant reductions were found. TKA, however, resulted in significantly reduced extensor moments, leading to efficiency deficits ranging from 8% to 43% in flexion ranges associated with downhill walking and the stance phase of gait, respectively. Comparing the arthroplasties: TKA was significantly less efficient than both UKA-M and BCA-M over ranges representing stair ascent and gait; TKA showed a significant 23% reduction compared to BCA-L in the same range. There were no differences in efficiency between the UKAs and BCAs over any flexion range and TKA efficiency was consistently lower than all other arthroplasties. Bi-UKA generated the same extensor moment as native knee at flexion angles typical of fast gait (0–30°). Again, TKA displayed significantly reduced extensor moments towards full extension but returned to the normal range in deep flexion. Overall, TKA was significantly less efficient following TKA than Bi-UKA. Recipients of PKA and CPKA have superior functional outcomes compared to TKA, particularly in relation to fast walking. This in vitro study found that both UKA and CPKA better preserve extensor function compared to TKA, especially when evaluated in the context of daily functional tasks. TKA reduced knee extensor efficiency by over 40% at flexion angles associated with gait, arguably the most important activity to maintain patient satisfaction. These findings go some way to explaining functional deficiencies of TKA compared to CPKA observed clinically