Aims. The purpose of this study was to evaluate the mid-term outcomes of
Aims. Hip arthroscopy (HA) has become the treatment of choice for femoroacetabular impingement (FAI). However, less favourable outcomes following arthroscopic surgery are expected in patients with severe chondral lesions. The aim of this study was to assess the outcomes of HA in patients with FAI and associated chondral lesions, classified according to the Outerbridge system. Methods. A systematic search was performed on four databases. Studies which involved HA as the primary management of FAI and reported on chondral lesions as classified according to the Outerbridge classification were included. The study was registered on PROSPERO. Demographic data, patient-reported outcome measures (PROMs), complications, and rates of conversion to total hip arthroplasty (THA) were collected. Results. A total of 24 studies were included with a total of 3,198 patients (3,233 hips). Patients had significantly less improvement in PROMs if they had Outerbridge grade III and IV lesions (p = 0.012). Compared with microfracture,
This systematic review examines the current literature regarding surgical techniques for restoring articular cartilage in the hip, from the older microfracture techniques involving perforation to the subchondral bone, to adaptations of this technique using nanofractures and scaffolds. This review discusses the autologous and allograft transfer systems and the
Purpose. Osteochondral lesions (OCL) of the talus remain a challenging therapeutic task to orthopaedic surgeons. Several operative techniques are available for treatment, e.g. autologous chondrocyte implantation (ACI), osteochondral autograft transfer system (OATS), matrix-induced autologous chondrocyte implantation (MACI). Good early results are reported; however, disadvantages are sacrifice of healthy cartilage of another joint or necessity of a two-stage procedure. This case describes a novel, one-step operative treatment of OCL of the talus utilizing the
The February 2023 Hip & Pelvis Roundup360 looks at: Total hip arthroplasty or internal fixation for hip fracture?; Significant deterioration in quality of life and increased frailty in patients waiting more than six months for total hip or knee arthroplasty: a cross-sectional multicentre study; Long-term cognitive trajectory after total joint arthroplasty; Costal cartilage grafting for a large osteochondral lesion of the femoral head; Foley catheters not a problem in the short term; Revision hips still a mortality burden?; How to position implants with a robotic arm; Uncemented stems in hip fracture?
Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury. A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.Aims
Methods
The June 2023 Foot & Ankle Roundup360 looks at: Nail versus plate fixation for ankle fractures; Outcomes of first ray amputation in diabetic patients; Vascular calcification on plain radiographs of the ankle to diagnose diabetes mellitus; Elderly patients with ankle fracture: the case for early weight-bearing; Active treatment for Frieberg’s disease: does it work?; Survival of ankle arthroplasty; Complications following ankle arthroscopy.
There has been a marked increase in the number of hip arthroscopies performed over the past 16 years, primarily in the management of femoroacetabular impingement (FAI). Insights into the pathoanatomy of FAI, and high-level evidence supporting the clinical effectiveness of arthroscopy in the management of FAI, have fuelled this trend. Arthroscopic management of labral tears with repair may have superior results compared with debridement, and there is now emerging evidence to support reconstructive options where repair is not possible. In situations where an interportal capsulotomy is performed to facilitate access, data now support closure of the capsule in selective cases where there is an increased risk of postoperative instability. Preoperative planning is an integral component of bony corrective surgery in FAI, and this has evolved to include computer-planned resection. However, the benefit of this remains controversial. Hip instability is now widely accepted, and diagnostic criteria and treatment are becoming increasingly refined. Instability can also be present with FAI or develop as a result of FAI treatment. In this annotation, we outline major current controversies relating to decision-making in hip arthroscopy for FAI. Cite this article:
The repair of chondral lesions associated with
femoroacetabular impingement requires specific treatment in addition
to that of the impingement. In this single-centre retrospective
analysis of a consecutive series of patients we compared treatment
with microfracture (MFx) with a technique of enhanced microfracture
autologous matrix-induced chondrogenesis (AMIC). Acetabular grade III and IV chondral lesions measuring between
2 cm2 and 8 cm2 in 147 patients were treated
by MFx in 77 and AMIC in 70. The outcome was assessed using the
modified Harris hip score at six months and one, two, three, four
and five years post-operatively. The outcome in both groups was
significantly improved at six months and one year post-operatively.
During the subsequent four years the outcome in the MFx group slowly deteriorated,
whereas that in the AMIC group remained stable. Six patients in
the MFx group subsequently required total hip arthroplasty, compared
with none in the AMIC group We conclude that the short-term clinical outcome improves in
patients with acetabular chondral damage following both MFx and
AMIC. However, the AMIC group had better and more durable improvement,
particularly in patients with large (≥ 4 cm2) lesions. Cite this article:
Osteochondral lesions (OCLs) occur in up to 70%
of sprains and fractures involving the ankle. Atraumatic aetiologies have
also been described. Techniques such as microfracture, and replacement
strategies such as autologous osteochondral transplantation, or
autologous chondrocyte implantation are the major forms of surgical
treatment. Current literature suggests that microfracture is indicated
for lesions up to 15 mm in diameter, with replacement strategies
indicated for larger or cystic lesions. Short- and medium-term results
have been reported, where concerns over potential deterioration
of fibrocartilage leads to a need for long-term evaluation. Biological augmentation may also be used in the treatment of
OCLs, as they potentially enhance the biological environment for
a natural healing response. Further research is required to establish
the critical size of defect, beyond which replacement strategies
should be used, as well as the most appropriate use of biological augmentation.
This paper reviews the current evidence for surgical management
and use of biological adjuncts for treatment of osteochondral lesions
of the talus. Cite this article:
Chondral damage to the knee is common and, if left untreated, can proceed to degenerative osteoarthritis. In symptomatic patients established methods of management rely on the formation of fibrocartilage which has poor resistance to shear forces. The formation of hyaline or hyaline-like cartilage may be induced by implanting autologous, cultured chondrocytes into the chondral or osteochondral defect. Autologous chondrocyte implantation may be used for full-thickness chondral or osteochondral injuries which are painful and debilitating with the aim of replacing damaged cartilage with hyaline or hyaline-like cartilage, leading to improved function. The intermediate and long-term functional and clinical results are promising. We provide a review of autologous chondrocyte implantation and describe our experience with the technique at our institution with a mean follow-up of 32 months (1 to 9 years). The procedure is shown to offer statistically significant improvement with advantages over other methods of management of chondral defects.
Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.