This study was proposed to evaluate the efficacy of fibrin clot
Rotator cuff repair has excellent clinical outcomes but continues to be a challenge when it comes to large and massive tears as well as revision procedures. Reported symptomatic retear rates are still too high to be acceptable. The purpose of the present study was to evaluate the effectiveness of a combination of
Background. Osteoporotic fracture fixation in the proximal humerus remains a critical challenge. While the biomechanical benefits of screw
Intervertebral disc (IVD) degeneration is one of the major causes of back pain. A number of emerging treatments for the condition have failed during clinical trial due to the lack of robust biomechanical testing during product development. The aim of this work was to develop improved in-vitro testing methods to enable new therapeutic approaches to be examined pre-clinically. It forms part of a wider programme of research to develop a minimally invasive nucleus
We used an in vivo model to assess the use of an autogenous cancellous bone block and marrow graft for augmenting tendon reattachment to metallic implants. We hypothesised that
Abstract. Objectives. Develop a methodology to assess the long term mechanical behavior of intervertebral discs by utilizing novel sequential state testing. Methods. Bovine functional spinal units were sequentially mechanically tested in (1) native (n=8), (2) degenerated (n=4), and (3) treated states (n=4). At stage (2), artificial degeneration was created using rapid enzymatic degeneration, followed by a 24 hour hold period under static load at 42°C. At stage (3), nucleus
Background. Bone is a hierarchically structured hard tissue that consists of approximately 70 wt% low-crystallinity hydroxyapatite. Intricate tubular channels, such as Haversian canals, Volkman's canals, and canaliculi are a preserved feature of bone microstructure. These structures provide pathways for vasculature and facilitate cell-to-cell communication processes, together supporting viability of cellular components and aiding in remodeling processes. Unfortunately, many commercial bone
When performing total hip replacements in patients with hip dysplasia, acetabular
The high risk and the associated high mortality of secondary, contralateral hip fractures [1,2] could justify internal, invasive prophylactic reinforcement of the osteoporotic proximal femur to avoid these injuries in case of a low energy fall. Previous studies have demonstrated high potential of
Prophylactic
The treatment of massive chronic tears is problematic. The re-tear rate following surgery for extensive cuff tears remains high, and there is little consensus regarding optimum treatment. To investigate the outcome of a cohort of patients who had open repair of an extensive cuff tear using the Leeds Kuff patch as an augment. A retrospective cohort study of consecutive patients with a massive cuff tear who had surgery in our regional elective orthopaedic centre over a two year period from January 2015 to Dec 2016. All patients followed identical rehabilitation protocols, supervised by physiotherapists with an interest in the shoulder. Outcomes assessment was undertaken at a minimum of 12 months by a registrar or physiotherapist who was not part of the treating team. Pre-op data collection included; range of motion, pain score, Oxford shoulder score (OSS), assessment of muscle atrophy on MRI. Data collection was completed in 15 patients. The mean age was 62 yrs (56 – 75). The mean pre-op OSS was 22, improving to a mean of 43. The range of motion and pain score improved. There were no intra-operative complications. One patient required a second surgery for evacuation of a haematoma at 10 days post op. One patient had an obvious re-tear at 4 months. Open rotator cuff repair with synthetic Kuff patch
The purpose of this study was to develop a novel, minimally invasive therapy for nucleus pulposus
The healing of a hamstring graft to bone is the weak link in the reconstruction of a cruciate ligament using this donor material. We therefore investigated the
Femoroplasty is the process of injecting cement (cement augmentation) into the proximal femur to prevent osteoporotic hip fractures. Femoroplasty increases the strength and energy to failure of the femur and can be performed in a minimally-invasively manner with lower hospitalization costs and reduced recovery. Our hypothesis was that efficient cement augmentation strategies can be identified via computational optimization. Therefore, using patient-specific planning we can minimize cement volume while increasing bone strength and reducing the risk of fracture. We proposed an
Infection of orthopaedic implants is a significant problem, with increased antibiotic resistance of adherent ‘biofilm’ bacteria causing difficulties in treatment. We have investigated the in vitro effect of a pulsed electromagnetic field (PEMF) on the efficacy of antibiotics in the treatment of infection of implants. Five-day biofilms of Exposure to a PEMF increased the effectiveness of gentamicin against the five-day biofilms of
A number of techniques have been developed to improve the immediate mechanical anchorage of implants for enhancing implant longevity. This issue becomes even more relevant in patients with osteoporosis who have fragile bone. We have previously shown that a dynamic hip screw (DHS) can be augmented with a calcium sulphate/hydroxyapatite (CaS/HA) based injectable biomaterial to increase the immediate mechanical anchorage of the DHS system to saw bones with a 400% increase in peak extraction force compared to un-augmented DHS. The results were also at par with bone cement (PMMA). The aim of this study was to investigate the effect of CaS/HA
Majority of osteoporosis related fractures are treated surgically using metallic fixation devices. Anchorage of fixation devices is sometimes challenging due to poor osteoporotic bone quality that can lead to failure of the fracture fixation. Using a rat osteoporosis model, we employed neutron tomography and histology to study the biological effects of implant
The most important outcome predictor of Legg-Calvé-Perthes disease (LCPD) is the shape of the healed femoral head. However, the deformity of the femoral head is currently evaluated by non-reproducible, categorical, and qualitative classifications. In this regard, recent advances in computer vision might provide the opportunity to automatically detect and delineate the outlines of bone in radiographic images for calculating a continuous measure of femoral head deformity. This study aimed to construct a pipeline for accurately detecting and delineating the proximal femur in radiographs of LCPD patients employing existing algorithms. To detect the proximal femur, the pretrained stateof-the-art object detection model, YOLOv5, was trained on 1580 manually annotated radiographs, validated on 338 radiographs, and tested on 338 radiographs. Additionally, 200 radiographs of shoulders and chests were added to the dataset to make the model more robust to false positives and increase generalizability. The convolutional neural network architecture, U-Net, was then employed to segment the detected proximal femur. The network was trained on 80 manually annotated radiographs using real-time data
Tendons mainly consist of collagen in order to withstand high tensile forces. Compared to other, high turnover tissues, cellularity and vascularity in tendons are low. Thus, the natural healing process of tendons takes long and can be problematic. In case of injury to the enthesis, the special transition from tendon over cartilage to bone is replaced by a fibrous scar tissue, which remains an unsolved problem in rotator cuff repair. To improve tendon healing, many different approaches have been described using scaffolds, stem cells, cytokines, blood products, gene therapy and others. Despite promising in vitro and in vivo results, translation to patient care is challenging. In clinics however, tendon auto- or allografts remain still first choice to augment tendon healing if needed. Therefore, it is important to understand natural tendon properties and natural tendon healing first. Like in other tissues, senescence of tenocytes seems to play an important role for tendon degeneration which is interestingly not age depended. Our in vivo healing studies have shown improved and accelerated healing by adding collagen type I, which is now used in clinics, for example for
The Spine Surgery Unit of IRCCS Istituto Ortopedico Rizzoli is dedicated to the diagnosis and the treatment of vertebral pathologies of oncologic, degenerative, and post-traumatic origin. To achieve increasingly challenging goals, research has represented a further strength for Spinal Surgery Unit for several years. Thanks to the close synergy with the Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, extensive research was carried out. The addition of the research activities intensifies a complementary focus and provides a unique opportunity of innovation. The overall goal of spine research for the Spine Surgery Unit and for the Complex Structure Surgical Sciences and Technologies is and has been to:. - investigate the factors that influence normal spine function;. - engineer and validate new and advanced strategies for improving segmental spinal instrumentation, fusion