Literature surrounding
Aims. Machine learning (ML), a branch of
Machine learning (ML) holds significant promise in optimizing various aspects of total shoulder arthroplasty (TSA), potentially improving patient outcomes and enhancing surgical decision-making. The aim of this systematic review was to identify ML algorithms and evaluate their effectiveness, including those for predicting clinical outcomes and those used in image analysis. We searched the PubMed, EMBASE, and Cochrane Central Register of Controlled Trials databases for studies applying ML algorithms in TSA. The analysis focused on dataset characteristics, relevant subspecialties, specific ML algorithms used, and their performance outcomes.Aims
Methods
Machine-learning (ML) prediction models in orthopaedic trauma hold great promise in assisting clinicians in various tasks, such as personalized risk stratification. However, an overview of current applications and critical appraisal to peer-reviewed guidelines is lacking. The objectives of this study are to 1) provide an overview of current ML prediction models in orthopaedic trauma; 2) evaluate the completeness of reporting following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement; and 3) assess the risk of bias following the Prediction model Risk Of Bias Assessment Tool (PROBAST) tool. A systematic search screening 3,252 studies identified 45 ML-based prediction models in orthopaedic trauma up to January 2023. The TRIPOD statement assessed transparent reporting and the PROBAST tool the risk of bias.Aims
Methods