The Latarjet procedure is a well described method to stabilize anterior shoulder instability. There are concerns of high complication rates, one of these being a painful shoulder without instability due to screw irritation. The arthroscopic changes in the shoulder at time of screw removal compared to those pre-Latarjet have not been described in the literature. We conducted a retrospective review of arthroscopic videos between 2015 and 2022 of 17 patients at the time of their Latarjet screw removal and where available (n=13) compared them to arthroscopic findings at time of index Latarjet. Instability was an exclusion criterion. X-rays prior to screw removal were assessed independently by two observers blinded to patient details for lysis of the graft. Arthroscopic assessment of the anatomy and pathological changes were made by two shoulder surgeons via mutual consensus. An intraclass correlation coefficient (ICC) was analyzed as a measure for the inter-observer reliability for the radiographs. Our cohort had an average age of 21.5±7.7 years and an average period of 16.2±13.1 months between pre- and post-arthroscopy. At screw removal all patients had an inflamed subscapularis muscle with 88% associated musculotendinous tears and 59% had a pathological posterior labrum. Worsening in the condition of subscapularis muscle (93%), humeral (31%) and glenoid (31%) cartilage was found when compared to pre-Latarjet
Background. Surgical simulators allow learner-focussed skills training, in controllable and reproducible environments suitable for assessment. Aim. To research the face validity (extent to which the simulator resembles reality, determined subjectively by subjects), and construct validity, (ability to objectively differentiate between subjects with varying levels of arthroscopic experience) of a virtual reality arthroscopy simulator, to validate its effectiveness as an educational tool. Methods. Using the simulator insightArthroVR®, 37 subjects were required to perform diagnostic knee arthroscopy, palpate anatomical landmarks and complete questionnaires. The simulator recorded objective data to assess proficiency: time to complete tasks, roughness in instrument handling, and path length covered by the
Introduction. While manual total knee arthroplasty (MTKA) procedures have demonstrated excellent clinical success, occasionally intraoperative damage to soft tissues can occur. Robotic-arm assisted technology is designed to constrain a sawblade in a haptic zone to help ensure that only the desired bone cuts are made. The objective of this cadaver study was to quantify the extent of soft tissue damage sustained during TKA through a robotic-arm assisted (RATKA) haptically guided approach and conventional MTKA approach. Methods. Four surgeons each prepared six cadaveric legs for CR TKA: 3 MTKA and 3 RATKA, for a total of 12 RATKA and 12 MTKA knees. With the assistance of an
Recent literature has demonstrated that conventional arthroscopic techniques do not adequately visualise areas of predilection of pathology of the long head of biceps (LHB) tendon and are associated with a 30–50% rate of missed diagnoses. The aim of this study was to evaluate the safety, effectiveness and ease of performing biceps tenoscopy as a novel strategy for reducing the rate of missed diagnoses. Five forequarter amputation cadaver specimens were studied. The pressure in the anterior compartment was measured before and after surgical evaluation. Diagnostic glenohumeral arthroscopy was performed and the biceps tendon was tagged to mark the maximum length visualised by pulling the tendon into the joint. Biceps tenoscopy was performed using 3 different techniques (1. Flexible video-endoscopy, 2. Standard arthroscopy via Neviaser portal. 3. Standard
Symptomatic tarsal coalitions failing conservative treatment are traditionally managed by open resection. Arthroscopic excision of calcaneonavicular bars have previously been described as has a technique for excising talocalcaneal bars using an
The recognition of the role of TFCC as a major distal radioulnar joint stabilizer and a buffer to compressive forces indicates the importance of preserving as much of this structure as possible. We developed arthroscopic technique for repair of Palmer I B tears of TFCC using a hypodermic needle which obviates the need of any additional skin incision. With wrist under traction important landmarks like radial styloid process, ulnar styloid process, Lister's tubercle and extensor tendons are marked using skin marker. For placement of the
The aim of this study was to investigate the effect of laboratory-based simulator training on the ability of surgical trainees to perform diagnostic arthroscopy of the knee. A total of 20 junior orthopaedic trainees were randomised to receive either a fixed protocol of arthroscopic simulator training on a bench-top knee simulator or no additional training. Motion analysis was used to assess performance objectively. Each trainee then received traditional instruction and demonstrations of diagnostic arthroscopy of the knee in theatre before performing the procedure under the supervision of a blinded consultant trainer. Their performance was assessed using a procedure-based assessment from the Orthopaedic Competence Assessment Project and a five-point global rating assessment scale. In theatre the simulator-trained group performed significantly better than the untrained group using the Orthopaedic Competence Assessment Project score (p = 0.0007) and assessment by the global rating scale (p = 0.0011), demonstrating the transfer of psychomotor skills from simulator training to arthroscopy in the operating theatre. This has implications for the planning of future training curricula.