Osteochondromas are benign chondrogenic lesions arising on the external surface of the bone with aberrant cartilage (exostosis) from the perichondral ring that may contain a marrow cavity also. In a few cases, depending on the anatomical site affected, different degrees of edema, redness, paresthesia, or paresis can take place due to simple contact or friction. Also, depending on their closeness to neurovascular structures, the procedure of excision becomes crucial to avoid recurrence. We report a unique case of recurrent osteochondroma of the proximal humerus enclosing the brachial
Transarticular screws at the C1 to C2 level of the cervical spine provide rigid fixation, but there is a danger of injury to a vertebral
Helical plates are preferably used for proximal humeral shaft fracture fixation and potentially avoid radial nerve irritation as compared to straight plates. Aims:(1) to investigate the safety of applying different long plate designs (straight, 45°-, 90°-helical and ALPS) in MIPO-technique to the humerus. (2) to assess and compare their distances to adjacent anatomical structures at risk. MIPO was performed in 16 human cadaveric humeri using either a straight plate (group1), a 45°-helical (group2), a 90°-helical (group3) or an ALPS (group4). Using CT-angiography, distances between brachial
Helical plates potentially bypass the medial neurovascular structures of the thigh. Recently, two plate designs (90°- and 180°-helix) proved similar biomechanically behaviour compared to straight plates. Aims of this study were: (1) Feasibility of MIPO-technique with 90°- and 180°-helical plates on the femur, (2) Assessment of distances to adjacent anatomical structures at risk, (3) Comparison of these distances to using medial straight plates instead, (4) Correlation of measurements performed in anatomic dissection with CT-angiography. MIPO was performed in ten cadaveric femoral pairs using either a 90°-helical 14-hole-LCP (Group1) or a 180°-helical 15-hole-LCP-DF (Group2). CT angiography was used to evaluate the distances between the plates and the femoral
A comprehensive understanding of the self-repair abilities of menisci and their overall function in the knee joint requires three-dimensional information. However, previous investigations of the meniscal blood supply have been limited to two-dimensional imaging methods, which fail to accurately capture tissue complexity. In this study, micro-CT was used to analyse the 3D microvascular structure of the meniscus, providing a detailed visualization and precise quantification of the vascular network. A contrast agent (μAngiofil®) was injected directly into the femoral
The purpose of this study is to enhance massive bone allografts osseointegration used to reconstruct large bone defects. These allografts show >50% complication rate requiring surgical revision in 20% cases. A new protocol for total bone decellularisation exploiting the vasculature can offer a reduction of postoperative complication by annihilating immune response and improving cellular colonization/ osseointegration. The nutrient
In spite of extensive accounts describing the blood supply to the femoral head, the prediction of avascular necrosis is elusive. Current opinion emphasises the contributions of the superior retinacular
Previous work has demonstrated vulnerability of the femoral nerve to damage by anterior acetabular retractors during THA. The aim of this study was to quantify the proximity of the femoral nerve to the anterior acetabulum, on cadaveric material and MRI studies. A standard posterior approach to the hip was carried out in 6 fresh frozen cadaveric hemipelves. Following dislocation and removal of the femoral head, measurements were taken from the anterior acetabular lip to the posterior aspect of the femoral nerve as it passed over this point. 14 MRI studies of the hip were obtained from the local PACS database (7 male, 7 female; mean age 58 (range 32–80)). T1 weighted axial scans were reviewed. Measurements were obtained from the anterior acetabular lip to the posterior surface of the femoral nerve and
Introduction. recent studies recognised metabolic abnormalities as additional factors in the development of rotator cuff (RC) tendinopathy. It has been hypothesised that the insertional area of this tendon is susceptible to degenerative changes due to intrinsic hypovascularization. The mechanisms underlying this process are not yet clear. In this study we attempted to confirm if larger lesions of the RC are related to impaired vasodilatatory response of the local circulation in conditions of “hemodynamic stress”. Patients & Methods. it was assumed that impaired vasal reaction to “hemodynamic stress” was a systemic condition. This phenomenon should therefore be not limited to the critical area of the tendon tear. Given this assumption post-ischemic vasodilation of brachial
The nature of the Aneurysmal Bone Cyst (ABC) is still controversial among benign tumor, often identifiable in the “aggressive” form (Enneking stage 3) or pseudotumoral lesion. It is well known instead the very high risk of intraoperative bleeding, indicating a strongly unfavorable relationship between the surgical morbidity and the nature of the disease. Recently, excellent results have been obtained in the treatment of ABC by repeated arterial embolizations (SAE), without any surgery, while initial experiences with administration of denosumab and doxycycline are still under study. This study presents the results of our initial experience in the treatment of vertebral ABC through the use of concentrated autologous mesenchymal stem cells (MSCs). Two teenagers aged 15 years, male, and 14 years, female, came to our attention both with diagnosis of ABC in C2 vertebra which was histologically confirmed. They were both neurologically intact, the girl complained of neck pain. The arteriography showed in both cases close relationships between the pathological ABC vascularization and the vertebral and cervical ascending
Anatomical atlases document safe corridors for placement of wires when using fine-wire circular external fixation. The furthest posterolateral corridor described in the distal tibia is through the fibula. This limits the crossing angle and stability of the frame. In this paper we describe a new, safe Retro-Fibular Wire corridor, which provides greater crossing angles and increased stability. In a cadaver study, 20 formalin-treated legs were divided into two groups. Wires were inserted into the distal quarter of the tibia using two possible corridors and standard techniques of dissection identified the distance of the wires from neurovascular structures. In both groups the posterior tibial neurovascular bundle was avoided. In group A the peroneal
The efficacy of β-tricalcium phosphate (β-TCP) loaded with bone morphogenetic protein-2 (BMP-2)-gene-modified bone-marrow mesenchymal stem cells (BMSCs) was evaluated for the repair of experimentally-induced osteonecrosis of the femoral head in goats. Bilateral early-stage osteonecrosis was induced in adult goats three weeks after ligation of the lateral and medial circumflex
Autologous bone grafting is a standard procedure for the clinical repair of skeletal defects, and good results have been obtained. Autologous vascularized bone grafting is currently the procedure of choice because of high osteogenic potential and resistance against reabsorption. Disadvantages of this procedure include limited availability of donor sites, clinical difficulty in handling, and a failure rate exceeding 10%. Allografts are often used for massive bone loss, but since only the marginal portion is newly vascularized after the implantation non healing fractures are often reported, along with a graft reabsorption. To overcome these problems, some studies in literature tried to conjugate bone graft and vascular supply, with encouraging results. On the other side, several studies in literature reported the ability of bone marrow derived cells to promote neo-vascularization. In fact, bone marrow contains not only hematopoietic stem cells (HSCs) and MSCs as a source for regenerating tissues but also accessory cells that support angiogenesis and vasculogenesis by producing several growth factors. In this scenario a new procedure was developed, consisting in an allogenic bone graft transplantation in a critical size defect in rabbit radius, plus a deviation at its inside of the median
Posterior soft tissue repair is often performed in Total Hip Arthroplasty (THA). Many reports have shown the advantage of posterior soft tissue repair in reducing their prosthetic hip dislocation rates. We describe an easy and inexpensive way of passing sutures through small drill holes in the Greater Trocanter to re-attach muscle, tendon and capsule in a posterior soft tissue repair. By using a reversed monofilament suture on a straight needle held in
The potential of cells derived from human umbilical cord(UC) for orthopaedic cell engineering is evaluated by dissecting the UC into four distinct anatomical structures – cord lining (CL), Wharton's Jelly (WJ), umbilical cord
Femoral neck fractures remain the leading cause of early failure after metal-on-metal hip resurfacing. Although its' exact pathomechanism has yet to be fully elucidated, current retrieval analysis has shown that either an osteonecrotic event and/or significant surgical trauma to the femoral head neck junction are the leading causes. It is most likely that no single factor like patient selection and/or femoral component orientation can fully avoid their occurrence. As in osteonecrosis of the native hip joint, a certain cell injury threshold may have to be reached in order for femoral neck fracture to occur. These insults are not limited to the surgical approach, but also include femoral head preparation, neck notching, and cement penetration. Although some have argued that the posterior approach does not represent an increased risk fracture for ON after hip resurfacing because of the so-called intraosseous blood supply to the femoral head, to date, the current body of literature on femoral head blood flow in the presence of arthritis has confirmed the critical role of the extraosseous blood supply from the ascending branch of the medial circumflex, as well as the lack of any substantial intraosseous blood supply. Conversely, anterior hip dislocation of both the native hip joint as well as the arthritic hip preserves femoral head vascularity. The blood supply can be compromised by either sacrificing the main branch of the ascending medial femoral circumflex
Background. Deep infection rates of 1 - 2% following primary hip and knee arthroplasty are mainly due to endogenous contamination of the surgical site from bacteria within the patient's own skin. However surgical skin preparation removes only bacteria from the surface of the skin, leaving viable bacteria in the deeper layers of the skin within hair follicles and sweat and sebaceous glands. The aim of our study was to test the hypothesis that surface skin swabs taken after skin preparation with alcoholic povidone iodine would not grow bacteria, whereas full thickness biopsies taken from the line of surgical incision would grow bacteria. Methods. Under LREC approval, informed consent was obtained from 22 patients undergoing primary hip (n=9) or knee (n=13) arthroplasty. All patients received intravenous antibiotic prophylaxis at the time of induction of anaesthesia. After surgical skin preparation with alcoholic povidone iodine, a surface skin swab and full thickness skin biopsy, using an 8mm x 4 mm elliptical punch, were taken. The swab culture was incubated aerobically and anaerobically at 37°C. The skin biopsy was cut aseptically in half. One half was crushed using
Summary Statement. Bone stress fracture triggers a rapid increase in blood flow in association with mast cell production of inducible nitric oxide synthase (iNOS). NOS inhibition blocks the increase in blood flow and reduces woven bone formation needed for stress fracture healing. Introduction. Vascular-bone interactions are critical in skeletal development and fracture healing. We recently showed that angiogenesis is required for stress fracture healing. However, the changes in vascularity that occur in the first 72 hours after stress fracture can not be explained by angiogenesis. Here, we evaulated early changes in blood flow and vasodilation after either damaging (stress fracture) or non-damaging mechanical loading in rats. Methods. The right forelimbs of adult rats were subjected to cyclic axial compression in vivo. We used two established protocols: damaging loading that creates a stress fracture and leads to woven bone formation (WBF loading), or non-damaging loading that stimulates lamellar bone formation (LBF loading). PET imaging was used to evaluate blood flow and fluoride kinetics based on uptake of . 15. O water and . 18. F fluoride radioisotopes, respectively, at the site of bone formation. To quantify vasodilation, the area of the anterior interosseous
Introduction. The purpose of this study was to evaluate the outcome of vascularized iliac bone grafting for idiopathic osteonecrosis of the femoral head. Methods. We reviewed the clinical and radiological results of 35 operations performed on 29 patients who had osteonecrosis of the femoral head (ONFH) in which a pedicle iliac bone grafting was performed for minimum follow-up of 10 years. The average age was 35 years (range, 17 to 62 years). According to the Japanese Orthopaedic Association classification for ONFH, there were 28 stage 2, 7 stage 3-A, 17 type C-1 hips, and 18 type C-2 hips. After a bone tunnel of 1.5 × 5 cm was made in the anterior aspect of the femoral head and curettage of necrotic lesion was performed, the pedicle bone with the deep circumflex iliac
Tissue reconstruction, based on stem cell activity has become an important part of orthopaedic practice. It is now possible to develop cell lines which are able to produce the fundamental cells which can be used in musculoskeletal regeneration, especially in fracture healing, cartilage regeneration, and muscle repair. However, for the newly implanted cells to be effective, it is vital to have an adequate and developing blood supply to that area. Human and animal studies have demonstrated the marked contribution of bone marrow derived precursor cells in the normal bone healing process. Studies of the application of bone marrow graft have shown that there is greater bone growth when more precursor cells are grafted and these cells are thought to be a mixed population of stems cells and their associated progeny. CD34+ cells have shown remarkable ability to differentiate into many cells types which include chondrocytes and osteocytes. They have also been shown to home on to sites of bone injury and mature into bone cells which take part in the repair process. Colleagues in our laboratories have described a plastic adherent sub-population of CD34+ cells which have been able to reconstitute and sustain hematopoeisis over 5 weeks, similar to long-term marrow culture. This sub-population of cells are called omnicytes. Using this sub-population, we have conducted in vitro and animal experiments using a fracture healing model to assess the role of stem cells in accelerating the fracture healing process. However, it is clear that in order for these cells to be effective, the blood supply needs to be viable. In this paper, the importance of the blood supply and the role of blood flow will be discussed particularly in relation to fracture healing and intervertebral disc regeneration. In fracture healing, the increase of blood flow occurs within the first 6 weeks after the fracture has occurred and CD34+ cells applied to the fracture site via the nutrient