Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_12 | Pages 13 - 13
1 Jun 2016
Hindle P Khan N Baily J Biant L Simpson H Péault B
Full Access

Our unpublished data has indicated that the perivascular stem cells (PSCs) have increased chondrogenic potential compared to mesenchymal stem cells (MSCs) derived in culture. There has been a recent change in the theory that stem cells work by a paracrine effect rather than differentiation. There are minimal data demonstrating the persistence of implanted stem cells when used for engraftment. This study aimed to develop an autologous large animal model for perivascular stem cells as well as to determine if cells were retained in the articular cartilage defects. The reactivity of anti-human and anti-ovine antibodies was ascertained using immunohistochemistry and fluorescence-activated cell sorting (FACS). A panel of antibodies were combined and used to identify and purify pericytes (CD34-CD45-CD146+) and adventitial cells (CD34+CD45-CD146-) using FACS. The purified cells were cultured and their identity checked using FACS. These cultured cells demonstrated osteogenic, adipogenic and chondrogenic potential. Autologous ovine PSCs (oPSCs) were isolated, cultured and transfected using a GFP virus. The transfection rate was 88%. The cells were implanted into an articular cartilage defect on the medial femoral condyle using a hydrogel, four weeks following implantation the condyle was explanted and confocal laser scanning microscopy demonstrated the presence of oPSCs in the defect. Histology did not demonstrate any repair tissue at this early time point. These data have confirmed the viability our large animal model and that the implanted stem cells were retained in the defect four weeks following implantation


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 462 - 462
1 Sep 2012
Lakemeier S Reichelt J Foelsch C Fuchs-Winkelmann S Schofer M Paletta J
Full Access

Introduction. Differing levels of tendon retraction are found in full-thickness rotator cuff tears. The pathophysiology of tendon degeneration and retraction is unclear. Neoangiogenesis in tendon parenchyma indicates degeneration. Hypoxia inducible factor 1(HIF) and vascular endothelial growth factor (VEGF) are important inducers of neoangiogenesis. Rotator cuff tendons rupture leads to fatty muscle infiltration (FI) and muscle atrophy (MA). The aim of this study is to clarify the relationship between HIF and VEGF expression, neoangiogenesis, FI, and MA in tendon retraction found in full-thickness rotator cuff tears. Methods. Rotator cuff tendon samples of 33 patients with full-thickness medium-sized rotator cuff tears were harvested during reconstructive surgery. The samples were dehydrated and paraffin embedded. For immunohistological determination of VEGF and HIF expression, sample slices were strained with VEGF and HIF antibody dilution. Vessel density and vessel size were determined after Masson-Goldner staining of sample slices. The extent of tendon retraction was determined intraoperatively according to Patte's classification. Patients were assigned to 4 categories based upon Patte tendon retraction grade, including one control group. FI and MA were measured on standardized preoperative shoulder MRI. Results. HIF and VEGF expression, FI, and MA were significantly higher in torn cuff samples compared with healthy tissue (p<0.05). HIF and VEGF expression, and vessel density significantly increased with extent of tendon retraction (p<0.04). A correlation between HIF/VEGF expression and FI and MA could be found (p<0.04). There was no significant correlation between HIF/VEGF expression and neovascularity (p>0.05). Conclusion. Tendon retraction in full-thickness medium-sized rotator cuff tears is characterized by neovascularity, increased VEGF/HIF expression, FI, and MA. VEGF expression and neovascularity may be effective monitoring tools to assess tendon degeneration


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 135 - 135
1 Sep 2012
El-Husseiny M Pendegrass C Haddad F Blunn G
Full Access

Introduction. Intraosseous transcutaneous amputation prostheses (ITAP) provide an alternative means of attaching artificial limbs for amputees. Conventional stump-socket devices are associated with soft tissue complications including; pressure sores and tissue necrosis. ITAP resolves these problems by attaching the exo-prosthesis transcutaneously to the skeleton. The aim of this study is to increase the attachment of dermal fibroblasts to titanium alloy in vitro. Fibronectin (Fn) and laminin 332 (Ln) enhance early cell growth and adhesion. We hypothesize that silanized dual coatings of fibronectin and laminin (SiFnLn) will be more durable when compared with adsorbed dual coating (AdFnLn), and will enhance early fibroblast growth and adhesion compared to single coatings. Methods. The kinetics of dual single and dual protein coating attachment onto titanium alloy was quantified on silanized 10mm diameter discs using radiolabelled Fn (125I-Fn) and Ln (125I-Ln). Sixty discs were polished, sterilized and silanized. Coating durability was assessed when soaked in fetal calf serum (FCS) for 0, 1, 24, 48 and 72hrs. Data was compared to un-silanized Ti discs with the same coatings. Five thousand human dermal fibroblasts were seeded on discs (n = 6) of Ti polished alone (Pol), Ti with adsorbed fibronectin (AdFn), Ti with adsorbed laminin (AdLn), Ti adsorbed dual coating (AdFnLn), Ti silanized (Si), Ti silanized with fibronectin (SiFn), Ti silanized with laminin (SiLn), Ti silanized with a dual coating (SiFnLn) for 24hrs. In order to measure cell adhesion fibroblasts were fixed, vinculin stained using mouse vinculin antibody and alexa fluor. Axiovision Image Analysis software was used to measure cell area, vinculin focal adhesion markers per cell and per unit cell area. Data was analysed in SPSS and significance was assumed at the 0.05 level. Results. Silanized dual coatings bonded to Ti alloy in significantly larger quantities compared with adsorbed coatings at all time points (all p values < 0.05). Fibroblasts cultured on dual coatings were significantly larger, produced more vinculin markers per cell, and per unit cell area compared with single coatings. Cells on SiFnLn were larger with more numerous vinculin markers per cell, and per unit cell area compared with AdFnLn (p<0.05). Conclusion. This study has demonstrated that covalently bonding both fibronectin and laminin to Ti alloy provides a durable, dual coating that enhances early fibroblast growth and attachment compared with either protein coating alone in vitro. Our study showed that there is non-competitive binding of laminin on Ti surfaces in the presence of fibronectin. Dual coatings may be applied to the skin-penetrating region of transcutaneous devices to improve the skin seal and this may have positive implications for the development of ITAP


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 136 - 136
1 Sep 2012
El-Husseiny M Pendegrass C Elnikety S Haddad F Blunn G
Full Access

Introduction. Following amputation, residual stumps used to attach the external prostheses can be associated with sores, infection and skin necrosis. These problems could be overcome by off loading the soft tissues. Intraosseous transcutaneous amputation prostheses (ITAP) attach external implants directly to residual bone reducing these complications. However, a tight seal at the skin implant interface is crucial in preventing epithelial down-growth and infection. Fibronectin (Fn) and laminin 332 (Ln), enhance early cell growth and adhesion of keratinocytes. Silanization to titanium alloy (Ti) allows these proteins to bond to the metal directly. We hypothesize that silanized dual coatings of fibronectin and laminin (SiFnLn) will be more durable than absorbed proteins and that keratinocyte adhesion will be increased compared with Ti controls and single silanized proteins. Methods. 10 mm diameter Ti alloy discs were polished, sterilized and silanized. The kinetics of silanized single and dual protein coating attachment onto titanium alloy was quantified using radio-labelled Fn(125I-Fn) and Ln(125I-Ln). Coating durability was assessed when soaked in fetal calf serum (FCS) for 0, 1, 24, 48, 72hrs. Data was compared to un-silanized Ti discs with the same amount of adsorbed proteins. In order to study cell attachment 20 × 103 keratinocytes were seeded on the discs (n = 6): silanized (Si), silanized fibronectin (SiFn), silanized laminin (SiLn), silanized dual coating (SiFnLn) for 1, 4 and 24hrs. Adhesion of cells was assessed using mouse vinculin antibody for 2hrs and alexafluor for 1hr which stains focal adhesions responsible for attaching cells to surfaces. Axiovision Image Analysis software was used to measure cell area, vinculin markers per cell unit and per unit cell area on 15 cells per disc. Data was analysed in SPSS and significance was assumed at the 0.05 level. Results. Silanized dual coatings bonded to Ti alloy in significantly larger quantities compared with adsorbed coatings (all p values < 0.05). When proteins were combined on silanized discs the same amount of each protein was attached as when used as a single coating (i.e. non competitive binding). Keratinocytes cultured on silanized dual coatings were significantly larger, produced more vinculin markers per unit cell and per cell area compared with single coatings at all time points. Conclusion. This study has demonstrated that silanized using dual proteins on Ti alloy enhances early keratinocyte growth and attachment in vitro. It also shows that there is non-competitive binding of laminin to Ti alloys in presence of fibronectin. This may lead to improved epidermal attachment to ITAP creating a tight seal at the implant interface, which will prevent migration of the epithelium and subsequent infection in vivo


Bone & Joint Research
Vol. 5, Issue 4 | Pages 106 - 115
1 Apr 2016
Gruber HE Ode G Hoelscher G Ingram J Bethea S Bosse MJ

Objectives

The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics.

Methods

Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student t-test (two tailed; p < 0.05 was considered significant).


Bone & Joint Research
Vol. 5, Issue 9 | Pages 427 - 435
1 Sep 2016
Stravinskas M Horstmann P Ferguson J Hettwer W Nilsson M Tarasevicius S Petersen MM McNally MA Lidgren L

Objectives

Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing.

The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets.

DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory.

Materials and Methods

We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery in combination with bone regeneration. Gentamicin release was measured in four setups: 1) in vitro elution in Ringer’s solution; 2) local elution in patients treated for trochanteric hip fractures or uncemented hip revisions; 3) local elution in patients treated with a bone tumour resection; and 4) local elution in patients treated surgically for chronic corticomedullary osteomyelitis.


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1132 - 1137
1 Aug 2016
Lawendy A Bihari A Sanders DW Badhwar A Cepinskas G

Aims

Compartment syndrome results from increased intra-compartmental pressure (ICP) causing local tissue ischaemia and cell death, but the systemic effects are not well described. We hypothesised that compartment syndrome would have a profound effect not only on the affected limb, but also on remote organs.

Methods

Using a rat model of compartment syndrome, its systemic effects on the viability of hepatocytes and on inflammation and circulation were directly visualised using intravital video microscopy.


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1269 - 1274
1 Sep 2013
Uppal HS Peterson BE Misfeldt ML Della Rocca GJ Volgas DA Murtha YM Stannard JP Choma TJ Crist BD

We hypothesised that cells obtained via a Reamer–Irrigator–Aspirator (RIA) system retain substantial osteogenic potential and are at least equivalent to graft harvested from the iliac crest. Graft was harvested using the RIA in 25 patients (mean age 37.6 years (18 to 68)) and from the iliac crest in 21 patients (mean age 44.6 years (24 to 78)), after which ≥ 1 g of bony particulate graft material was processed from each. Initial cell viability was assessed using Trypan blue exclusion, and initial fluorescence-activated cell sorting (FACS) analysis for cell lineage was performed. After culturing the cells, repeat FACS analysis for cell lineage was performed and enzyme-linked immunosorbent assay (ELISA) for osteocalcin, and Alizarin red staining to determine osteogenic potential. Cells obtained via RIA or from the iliac crest were viable and matured into mesenchymal stem cells, as shown by staining for the specific mesenchymal antigens CD90 and CD105. For samples from both RIA and the iliac crest there was a statistically significant increase in bone production (both p < 0.001), as demonstrated by osteocalcin production after induction.

Medullary autograft cells harvested using RIA are viable and osteogenic. Cell viability and osteogenic potential were similar between bone grafts obtained from both the RIA system and the iliac crest.

Cite this article: Bone Joint J 2013;95-B:1269–74.


The Bone & Joint Journal
Vol. 95-B, Issue 12 | Pages 1703 - 1707
1 Dec 2013
Howard NE Phaff M Aird J Wicks L Rollinson P

We compared early post-operative rates of wound infection in HIV-positive and -negative patients presenting with open tibial fractures managed with surgical fixation.

The wounds of 84 patients (85 fractures), 28 of whom were HIV positive and 56 were HIV negative, were assessed for signs of infection using the ASEPIS wound score. There were 19 women and 65 men with a mean age of 34.8 years. A total of 57 fractures (17 HIV-positive, 40 HIV-negative) treated with external fixation were also assessed using the Checkett score for pin-site infection. The remaining 28 fractures were treated with internal fixation. No significant difference in early post-operative wound infection between the two groups of patients was found (10.7% (n = 3) vs 19.6% (n = 11); relative risk (RR) 0.55 (95% confidence interval (CI) 0.17 to 1.8); p = 0.32). There was also no significant difference in pin-site infection rates (17.6% (n = 3) vs 12.5% (n = 5); RR 1.62 (95% CI 0.44 to 6.07); p = 0.47).

The study does not support the hypothesis that HIV significantly increases the rate of early wound or pin-site infection in open tibial fractures. We would therefore suggest that a patient’s HIV status should not alter the management of open tibial fractures in patients who have a CD4 count > 350 cells/μl.

Cite this article: Bone Joint J 2013;95-B:1703–7.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 517 - 524
1 Apr 2011
Cox G McGonagle D Boxall SA Buckley CT Jones E Giannoudis PV

The scarcity of mesenchymal stem cells (MSCs) in iliac crest bone marrow aspirate (ICBMA), and the expense and time in culturing cells, has led to the search for alternative harvest sites. The reamer-irrigation-aspirator (RIA) provides continuous irrigation and suction during reaming of long bones. The aspirated contents pass via a filter, trapping bony fragments, before moving into a ‘waste’ bag from which MSCs have been previously isolated. We examined the liquid and solid phases, performed a novel digestion of the solid phase, and made a comparative assessment in terms of number, phenotype and differentiation capacity with matched ICBMA.

The solid fraction from the filtrate was digested for 60 minutes at 37°C with collagenase. Enumeration was performed via the colony-forming unit fibroblast (CFU-F) assay. Passage (P2) cells were differentiated towards osteogenic, adipogenic and chondrogenic lineages, and their phenotypes assessed using flow cytometry (CD33, CD34, CD45, CD73, CD90, and CD105).

MSCs from the RIA phases were able to differentiate at least as well as those from ICBMA, and all fractions had phenotypes consistent with other established sources. The median number of colonies for the three groups was: ICBMA = 8.5 (2 to 86), RIA-liquid = 19.5 (4 to 90), RIA-solid = 109 (67 to 200) per 200 μl. The mean total yield of cells for the three groups was: ICBMA = 920 (0 to 4275), RIA-liquid = 114 983 (16 500 to 477 750), RIA-solid = 12 785 (7210 to 28 475).

The RIA filtrate contains large numbers of MSCs that could potentially be extracted without enzymatic digestion and used for bone repair without prior cell expansion.


Bone & Joint Research
Vol. 2, Issue 6 | Pages 112 - 115
1 Jun 2013
Ismail HD Phedy P Kholinne E Kusnadi Y Sandhow L Merlina M

Objectives

Nonunion is one of the most troublesome complications to treat in orthopaedics. Former authors believed that atrophic nonunion occurred as a result of lack of mesenchymal stem cells (MSCs). We evaluated the number and viability of MSCs in site of atrophic nonunion compared with those in iliac crest.

Methods

We enrolled five patients with neglected atrophic nonunions of long bones confirmed by clinical examinations and plain radiographs into this study. As much as 10 ml bone marrow aspirate was obtained from both the nonunion site and the iliac crest and cultured for three weeks. Cell numbers were counted using a haemocytometer and vitality of the cells was determined by trypan blue staining. The cells were confirmed as MSCs by evaluating their expression marker (CD 105, CD 73, HLA-DR, CD 34, CD 45, CD 14, and CD 19). Cells number and viability were compared between the nonunion and iliac creat sites.