Introduction:. Deep infection after total joint arthroplasty is a devastating complication with reported incidence of 1–3% with projection to increase to 6.8% by 2030. The direct costs of revision surgery due to septic failure are estimated at over $55,000 per case. Antibiotic-Loaded Bone Cement (ALBC) has been proposed as a preventive measure to decrease post-operative infection rates. Its efficacy has been compared with plain bone cement (PBC) in multiple studies. There has been no study to our knowledge examining its efficacy in “high risk” patients. The purpose of this study is to compare infection rates in three cohorts of patients: (1) all patients receiving only PBC, (2) all patients receiving only ALBC, and (3) only “high risk” patients receiving ALBC. Methods:. A standard cement protocol was instituted at our hospital for primary total knee arthroplasties (pTKA). From January 2000 to 2005 all pTKAs were performed with PBC. From February 2005 to May 2010, all pTKAs were performed with ALBC. From June 2010 to March 2012, all patients received regular bone cement unless they had previous diagnoses of rheumatoid arthritis, obesity, and/or diabetes mellitus. Our institutional joint registry was queried and the three cohorts' individual charts were retrospectively reviewed. Infection rates amongst cohorts were compared at 30 days, 6 months, and 1 year from index surgery date utilizing two sided proportion tests. Results:. A total of 3,292 consecutive primary TKAs with full follow up were included. Overall infection rate at one year for the entire study was 0.76%. There were 1,025 patients who received PBC, 1486 ALBC, and 781 in the risk stratified cohort. The 30-day infection rates for cohorts 1, 2, 3 were .0.29%, 0.20%, and 0.13% respectively. The 6-month infection rates for cohorts 1, 2, 3 were 0.39%, 0.54% and 0.38% respectively. The 1-year infection rate for cohorts 1, 2, 3 were 0.78%, 0.61%, and 0.64% respectively. The differences in infection rates between each cohort at all three time intervals were not statistically significant. Conclusions:.
Introduction. Periprosthetic joint infection (PJI) is a serious problem and requires great effort and cost for its treatment. Treatment options may vary from resection arthroplasty, retention of prosthesis with debridement, one stage revision and two stage revision with handmade antibiotic impregnated cement spacer or with prefabricated
Aim. Aim was to compare revision rates when using single versus dual
The infected joint arthroplasty continues to be a very challenging problem. Its management remains expensive, and places an increasing burden on health care systems. It also leads to a long and difficult course for the patient, and frequently a suboptimal functional outcome. The choice of a particular treatment program will be influenced by a number of factors. These include the acuteness or chronicity of the infection; the infecting organism(s), its antibiotic sensitivity profile and its ability to manufacture glycocalyx; the health of the patient; the fixation of the prosthesis; the available bone stock; and the particular philosophy and training of the surgeon. For most patients, antibiotics alone are not an acceptable method of treatment, and surgery is necessary. The standard of care for established infection is two stage revision with
Revision of infected TKA is one of the most challenging operation as the surgeon should achieve two goals, ie eradication of infection and restoration of function. For the eradication of infection, a minimum of two operations are needed in most of cases. First stage of revision is meticulous debridement and insertion of
The infected joint arthroplasty continues to be a very challenging problem. Its management remains expensive, and places an increasing burden on health care systems. It also leads to a long and difficult course for the patient, and frequently a suboptimal functional outcome. The choice of a particular treatment program will be influenced by a number of factors. These include the acuteness or chronicity of the infection; the infecting organism(s), its antibiotic sensitivity profile and its ability to manufacture glycocalyx; the health of the patient; the fixation of the prosthesis; the available bone stock; and the particular philosophy and training of the surgeon. For most patients, antibiotics alone are not an acceptable method of treatment, and surgery is necessary. The standard of care for established infection is two-stage revision with
The infected joint arthroplasty continues to be a very challenging problem. Its management remains expensive, and places an increasing burden on health care systems. It also leads to a long and difficult course for the patient, and frequently a sub optimal functional outcome. The choice of a particular treatment program will be influenced by a number of factors. These include the acuteness or chronicity of the infection; the infecting organism(s), its antibiotic sensitivity profile and its ability to manufacture glycocalyx; the health of the patient; the fixation of the prosthesis; the available bone stock; and the particular philosophy and training of the surgeon. For most patients, antibiotics alone are not an acceptable method of treatment, and surgery is necessary. The standard of care for established infection is two stage revision with
Despite the increasing availability of bone grafting materials, the regeneration of large bone defects remains a challenge. Especially infection prevention while fostering regeneration is a crucial issue. Therefore, loading of grafting material with antibiotics for direct delivery to the site of need is desired. This study evaluates the concept of local delivery using in vitro and in vivo investigations. We aim at verifying safety and reliability of a perioperative enrichment procedure of demineralized bone matrix (DBM) with gentamicin. DBM (DBMputty, DIZG, Germany) was mixed with antibiotic using a syringe with an integrated mixing propeller (Medmix Systems, Switzerland). Gentamicin, as powder or solution, was mixed with DBM at different concentrations (25 −100 mg/g DBM), release and cytotoxicity was analyzed. For in vivo analysis, sterile drill hole defects (diameter: 6 mm, depth: 15 mm) were created in diaphyseal and metaphyseal bones of sheep (Pobloth et al. 2016). Defects (6 – 8 per group and time point) were filled with DBM or DBM enriched with gentamicin (50 mg/g DBM) or left untreated. After three and nine weeks, defect regeneration was analyzed by µCT and histology. The release experiments revealed a burst release of gentamicin from DBM independent of the used amount, the sampling strategy, or the formulation (powder or solution). Gentamicin was almost completely released after three days in all set-ups. Eluates showed an antimicrobial activity against S. aureus over at least three days. Eluates had no negative effect on viability and alkaline phosphatase activity of osteoblast-like cells (partially published Bormann et al. 2014). µCT and histology of the drill hole defects revealed a reduced bone formation with gentamicin loaded DBM. After nine weeks significantly less mineralized tissue was detectable in metaphyseal defects of the gentamicin group. Histological evaluation revealed new bone formation starting at the edges of the drill holes and growing into the center over time. The amount of DBM decreased over time due to the active removal by osteoclasts while osteoblasts formed new bone. Using this mixing procedure, loading of DBM was fast, reliable and possible during surgical setting. In vitro experiments revealed a burst and almost complete release after three days, antimicrobial activity and good biocompatibility of the eluates. Gentamicin/DBM concentration was in the range of clinically used antibiotic-loaded-cement for prophylaxis and treatment in joint replacement (Jiranek et al. 2006). The delayed healing seen in vivo was unexpected due to the good biocompatibility found in vitro. A reduced healing was also seen in spinal fusion where DBM was mixed with vancomycin (Shields et al. 2017), whereas DBM with gentamicin or DBM/bioactive glass with tobramycin had no negative effect on osteoinductivity or femur defect healing, respectively (Lewis et al. 2010, Shields et al. 2016). In conclusion, loading of DBM with gentamicin showed a proper antibiotic delivery over several days, covering the critical phase shortly after surgery. Due to the faster and complete release of the antibiotic compared to
Aim. To assess the effectiveness of role of frozen section in revision arthroplasty. Method. 21 patients with infected hip arthroplasties were operated in the form of one or two-staged revision hip arthroplasties. A frozen section was obtained intra-operatively and >5 PMN's/ HPF was considered as a positive indicator of infection. Fig 1 llustrating frozen section image. If the frozen section was reported negative (≤5 PMN's/HPF), the revision prosthesis was implanted after a thorough debridement and a wash. If the frozen section was reported as positive, after the debridement a non-articulating
Purpose. Failure resulting from a recurrent infection in total knee arthroplasty (TKA) is a challenging problem. Knee arthrodesis is one treatment option, however fusion is not always successful, as there is huge bone defect. The authors reports a new arthrodesis technique that uses a bundle of flexible intramedullary rods and an antibiotic-loaded cement spacer. Methods. There were 13 cases of arthrodesis due to recurrent periprosthetic joint infection, which were performed by the first author (WS Cho) at Asan Medical Center in Seoul from 2005 to 2014. All previous prosthetic components were removed and cement was thoroughly excised using a small osteotome. Two stage operation was done in most of cases. After thorough debridement,
Aim. Bacterial biofilms play a key role in prosthetic infection (PI) pathogenesis. Establishment of the biofilm phenotype confers the bacteria with significant tolerance to systemic antibiotics and the host immune system meaning thorough debridement and prosthesis removal often remain the only possible course of treatment. Protection of the prosthesis and dead-space management may be achieved through the use of
The use of a cemented implant instead of a spacer has been proposed due to the improved function in comparison with a spacer. Unfortunately the removal of a conventional cemented stem can be challenging. The use of a short cemented stem can overcome this problem. Between July 2011 and May 2013, 10 infected hips were treated with a short cemented stem as a spacer. The infected implants were cemented in 6 cases and cementless in 4 cases. Mean time from index operation was 3 years (range 0 to 8 years). It was the first treatment for infection in all cases.
Aim. Which patients is bone-defect-reconstruction with the Masquelet-technique suitable and which problems did we see?. Method. From 11/2011 to 4/2016 we treated 49 Patients (12f/37m) with bone-defects up to 150mm after septic complications with the Masquelet-technique. We had infected-non-unions of upper and lower extremity, chronic osteomyelitis, infected knee-arthrodesis and upper-ancle-empyema. On average the patients were 48 (8–74) years old. The mean bone-defect-size was 60 mm (25–150). From other hospitals came 47 of the 49 patient, where they had up to 20 (mean 4,9) operations caused by the infection. The time before transfer to our hospital was on average 177days (6–720). 40 patients receaved flaps because of soft tissue-defects (12 free flaps, 28 local flaps). 21 patients suffered a polytrauma. In 8 cases the femur, in 4 cases a knee-arthrodesis, in 34 cases tibia, in 2 cases humerus and in 1 case the ulna were infected resulting in bone defects. Indication for the Masquelet-technique was low-/incompliance in 35 cases due to higher grade of traumatic brain injury and polytrauma and difficult soft-tissue conditions, in 9 times problems with segment-transport and in 5 cases as dead space management. Positive microbial detection succeeded in 32 patients at the first operation. Mainly we found difficult to treat bacteria. After treating the infection with radical sequestrectomy, removal of foreign bodies and filling the defect with
Several risk factors can and should be addressed during first stage or spacer implantation surgery in order to minimize complications. Technical aspects as well as practical tips and pearls to overcome common nuisances such as spacer instability or femoral and acetabular bone loss will be discussed and shown with pictures. Total joint arthroplasty (TJA) is one of the most successful procedures in orthopaedics and excellent results are expected in virtually all cases. Periprosthetic joint infection (PJI) though unusual, is one of the most frequent and challenging complications after TJA. It is the third most common cause of revision in total hip replacement, responsible for up to 15% of all cases. In the past few years several improvements have been made in the management of an infected total hip prosthesis. Nevertheless it remains a challenging problem for the orthopaedic surgeon. Although numerous studies report favourable outcomes after one-stage revision surgery, two-stage has traditionally been considered as the gold standard for management of chronic infection. Two-stage exchange consists of debridement, resection of infected implants and usually temporary placement of an antibiotic-impregnated cement spacer before reimplantation of a new prosthesis. Spacers can be classified as static or articulating. The goals of using an articulating
Aim. To evaluate the ability of different combinations of
Introduction. We report the results of a prospective study of 1349 patients undergoing 1509 total knee replacements, identifying factors increasing the risk of infection. Methods. Data were collected prospectively between October 1998 and February 2002 by a dedicated audit nurse. Pre-operative demographic and medical details were recorded. Operative and post-operative complications were noted. The definitions of surgical-site infection were based on a modification of those published by the Centre for Disease Control (CDC) in 1992. A superficial wound infection had a purulent discharge or positive culture of organisms from aseptically-aspirated fluid, tissue, or from a swab. Deep infection was counted as an infection that required a secondary procedure. Patients were seen at 6, 18 and 36 months post-operatively in a dedicated knee audit clinic and infection details recorded. The association between infection and other factors was tested by chi-squared or Mann-Whitney tests for categorised or quantitative factors respectively. Results. 18 patients (1.2% of all total knee replacements) had deep infection and a further 49 suffered a superficial infection. We found no correlation between risk of infection and age, sex, BMI, ASA grade, tourniquet time, lateral release, surgeon, transfusion or the need for catheterisation in the early post-operative period. Diabetic patients had an increased odds ratio for deep and superficial infection, but these results did not reach statistical significance. Only 3 of the 49 superficial infections went onto develop a deep infection at an average of 21 months after surgery. Conclusion. Using modern orthopaedic surgical techniques including laminar flow theatres, systemic antibiotics and
A “two-stage exchange” remains the gold standard for treatment of the infected THA in North America. Although there is interest in “one-stage exchange” this technique is predicated on the use of fixation of the revision implants with
Introduction. Negative remodelling of the femoral cortex in the form of calcar resorption due to stress shielding and cortical hypertrophy at the level of the tip of the implant, due to distal load transfer, is frequently noted following cemented total hip replacement, most commonly with composite beam implants, but also with polished double tapers. The C-stem polished femoral component was designed with a third taper running from lateral to medial across and along the entire length of the implant, with the aim of achieving more proximal and therefore more natural loading of the femur. The hoop stresses generated in the cement mantle are transferred to the proximal bone starting at the calcar, which should theoretically minimise stress-shielding and calcar resorption, as well as reducing distal load transfer, as signified by the development of distal femoral cortical hypertrophy. Materials/Methods. We present the results of a consecutive series of 500 total hip replacements performed between March 2000 and December 2005 at a single institution, using a standard surgical technique and third generation cementing with Palacos-R
INTRODUCTION. Conventional surgical exposures are usually inadequate for 2-stage revision knee replacement ofinfected implants. Reduced range of motion, extensor mechanism stiffness, peripatellar contracture and soft tissue scarring make patellar eversion difficult and forced eversion places the integrity of the extensor mechanism at risk. On the contrary, a wide exposure is fundamental to allow complete cement spacer removal, soft tissue balancing, management of bone loss and reimplantation without damaging periarticular soft tissues. OBJECTIVES. To compare the long-term clinical, functional and radiographic results and the reinfection rate of the quadriceps snip approach and the tibial tubercle osteotomy in 2-stage revision knee replacement performed for septic loosening of the primary implant. METHODS. In our department, 87 patients had a 2 stage revision knee replacement for septic loosening of the primary implant between 1996 and 2008. In all patients, first stage consisted of primary implant removal, extensive soft tissue debridement and positioning of a static
Negative remodelling of the femoral cortex in the form of calcar resorption due to stress-shielding, and femoral cortical hypertrophy at the level of the tip of the implant due to distal load transfer, is frequenly noted following cemented total hip replacement, most commonly with composite beam implants, but also with polished double tapered components. The C-stem polished femoral component was designed with a third taper running from lateral to medial across and along the entire length of the implant, with the aim of achieving more proximal and therefore more natural loading of the femur. The implant is designed to subside within the femoral cement mantle utilising the cement property of creep, generating hoop stresses, which are transferred more proximally to the femoral bone, starting at the level of the medial calcar. The intention is to load the proximal femur minimising stress-shielding and calcar resorption, as well as reducing distal load transfer as signified by the lack of distal femoral cortical hypertrophy. We present the results of a consecutive series of 500 total hip replacements using C-stem femoral components, performed between March 2000 and December 2005 at a single institution. Data was collected prospectively and all patients remain under annual follow-up by a Specialist Arthroplasty Practitioner. The operations were performed using a standard surgical technique with third generation cementing using Palacos-R