Objective:. To observe the incidence of intra-operative vascular injuries during anterior cervical decompression and fusion (ACDF). Secondly, management and monitoring of the outcome post vascular injury during ACDF. Methods:. This a prospective study. A review of all spinal patients' records was performed from June 2006 to April 2011. A comprehensive literature review was also utilized. Inclusion criteria – all patients had ACDF post trauma. All non-traumatic cases were excluded. Results:. The study consisted of 55 patients; 15 were females and 40 were males. The age distribution was 23–65 years. Two patients were excluded due to non-traumatic causes. Of the remaining 53 patients, four sustained intra-operative vascular injuries during
Cervical spine fusion have gained interest in the literature since these procedures are now ever more frequently being performed in an outpatient setting with few complications and acceptable results. The purpose of this study was to assess the rate of blood transfusion after cervical fusion surgery, and its effect, if any on complication rates. The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was used to identify patients that underwent cervical fusion surgery from 2010 to 2013. Univariate and multivariate regression analysis was used to determine post-operative complications associated with transfusion and cervical fusion. We identified 11,588 patients who had cervical spine fusion between 2010 and 2013. The overall rate of transfusion was found to be 1.47%. All transfused patients were found to have increased risk of: venous thromboembolism (TBE) (OR 3.19, CI: 1.16–8.77), myocardial infarction (MI) (OR 9.12, CI: 2.53–32.8), increased length of stay (LOS) (OR 28.03, CI: 14.28–55.01) and mortality (OR 4.14, CI: 1.44–11.93). Single level fusion had increased risk of: TBE (OR 3.37, CI: 1.01–11.33), MI (OR 10.5, CI: 1.88–59.89), and LOS (OR 14.79, CI: 8.2–26.67). Multilevel fusion had increased risk of: TBE (OR 5.64, CI: 1.15–27.6), surgical site infection (OR 16.29, CI: 3.34–79.49), MI (OR 10.84, CI: 2.01–58.55), LOS (OR 26.56, CI: 11.8–59.78) and mortality (OR 10.24, CI: 2.45–42.71).
Background. Synthetic interbody spinal fusion devices are used to restore and maintain disc height and ensure proper vertebral alignment. These devices are often filled with autograft bone to facilitate bone bridging through the device while providing mechanical stability. Nonporous polyetheretherketone (PEEK) devices are widely used clinically for such procedures. 1. Trabecular Metal devices are an alternative, fabricated from porous tantalum. It was hypothesized that the porous Trabecular Metal device would better maintain autograft viability through the center of the device, the ‘graft hole’ (GH). Methods. Twenty-five goats underwent