Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 11 - 11
1 Mar 2021
Wong M Wiens C Kooner S Buckley R Duffy P Korley R Martin R Sanders D Edwards B Schneider P
Full Access

Nearly one quarter of ankle fractures have a recognized syndesmosis injury. An intact syndesmosis ligament complex stabilizes the distal tibio-fibular joint while allowing small, physiologic amounts of relative motion. When injured, malreduction of the syndesmosis has been found to be the most important independent factor that contributes to inferior functional outcomes. Despite this, significant variability in surgical treatment remains. This may be due to a poor understanding of normal dynamic syndesmosis motion and the resultant impact of static and dynamic fixation on post-injury syndesmosis kinematics. As the syndesmosis is a dynamic structure, conventional CT static images do not provide a complete picture of syndesmosis position, giving potentially misleading results. Dynamic CT technology has the ability to image joints in real time, as they are moved through a range-of-motion (ROM). The aim of this study was to determine if syndesmosis position changes significantly throughout ankle range of motion, thus warranting further investigation with dynamic CT. This is an a priori planned subgroup analysis of a larger multicentre randomized clinical trial, in which patients with AO-OTA 44-C injuries were randomized to either Tightrope or screw fixation. Bilateral ankle CT scans were performed at 1 year post-injury, while patients moved from maximal dorsiflexion (DF) to maximal plantar flexion (PF). In the uninjured ankles, three measurements were taken at one cm proximal to the ankle joint line in maximal DF and maximal PF: Anterior (ASD), middle (MSD), and posterior (PSD) syndesmosis distance, in order to determine normal syndesmosis position. Paired samples t-tests compared measurements taken at maximal DF and maximal PF. Twelve patients (eight male, six female) were included, with a mean age of 44 years (±13years). The mean maximal DF achieved was 1-degree (± 7-degrees), whereas the mean maximal PF was 47-degrees (± 8-degrees). The ASD in DF was 3.0mm (± 1.1mm) versus 1.9mm (± 0.8mm) in PF (p<0.01). The MSD in DF was 3.3mm (±1.1mm) versus 2.3mm (±0.9mm) in PF (p<0.01). The PSD in DF was 5.3mm (±1.5mm) versus 4.6mm (±1.9mm) in PF (p<0.01). These values are consistent with the range of normal parameters previously reported in the literature, however this is the first study to report the ankle position at which these measurements are acquired and that there is a significant change in syndesmosis measurements based on ankle position. Normal syndesmosis position changes in uninjured ankles significantly throughout range of motion. This motion may contribute to the variation in normal anatomy previously reported and controversies surrounding quantifying anatomic reduction after injury, as the ankle position is not routinely standardized, but rather static measurements are taken at patient-selected ankle positions. Dynamic CT is a promising modality to quantify normal ankle kinematics, in order to better understand normal syndesmosis motion. This information will help optimize assessment of reduction methods and potentially improve patient outcomes. Future directions include side-to-side comparison using dynamic CT analysis in healthy volunteers


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 121 - 121
1 Feb 2020
Steineman B Bitar R Sturnick D Hoffman J Deland J Demetracopoulos C Wright T
Full Access

INTRODUCTION. Proper ligament engagement is an important topic of discussion for total knee arthroplasty; however, its importance to total ankle arthroplasty (TAA) is uncertain. Ligaments are often lengthened or repaired in order to achieve balance in TAA without an understanding of changes in clinical outcomes. Unconstrained designs increase ankle laxity,. 1. but little is known about ligament changes with constrained designs or throughout functional activity. To better understand the importance of ligament engagement, we first investigated the changes in distance between ligament insertions throughout stance with different TAA designs. We hypothesize that the distance between ligaments spanning the ankle joint would increase in specimens following TAA throughout stance. METHODS. A validated method of measuring individual bone kinematics was performed on pilot specimens pre- and post-TAA using a six-degree-of-freedom robotic simulator with extrinsic muscle actuators and motion capture cameras (Figure 1). 2. Reflective markers attached to surgical pins and radiopaque beads were rigidly fixed to the tibia, fibula, talus, calcaneus, and navicular for each specimen. TAAs were performed by a fellowship-trained foot and ankle surgeon on two specimens with separate designs implanted (Cadence & Salto Talaris; Integra LifeSciences; Plainsboro, NJ). Each specimen was CT-scanned after robotic simulations of stance pre- and post-TAA. Specimens were then dissected before a 3D-coordinate measuring device was used to digitize the ligament insertions and beads. Ligament insertions were registered onto the bone geometries within CT images using the digitized beads. Individual bone kinematics measured from motion capture were then used to record the point-to-point distance between centers of the ligament insertions throughout stance. RESULTS. Results from the pilot specimens are presented for the calcaneofibular ligament (CFL) only. The distance between the CFL insertions was larger throughout stance following Cadence implantation (Figure 2A) and was decreased throughout most of stance following Salto Talaris implantation (Figure 2B). The percent change in CFL distance with respect to static standing was also increased with the Cadence implant (Figure 2C) and similar to intact following Salto Talaris implantation (Figure 2D). Ankle motion was similar to intact with the Cadence (Figure 3A) and was decreased with the Salto Talaris (Figure 3B). DISCUSSION. This study suggests that ligament length during stance changes following TAA. The Cadence implant similarly replicated ankle kinematics but CFL length was increased throughout stance which supports our hypothesis. In contrast, the Salto Talaris implant reduced ankle motion and decreased the CFL length. Although the slack length and pre-strain of the CFL were unknown, the distance between insertions from the pilot specimens provides preliminary insight into how ligament mechanics change post-TAA during functional activity. CLINICAL RELEVANCE. Preliminary results of ligament length changes throughout stance may indicate that ligament mechanics change post-TAA and could affect patient outcomes. Changes may be even more pronounced when a soft tissue release or reconstruction is performed to correct malalignment. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 35 - 35
1 Mar 2017
Mueller J Wentorf F Herbst S
Full Access

Purpose. The goal of Total Ankle Arthroplasty (TAA) is to relieve pain and restore healthy function of the intact ankle. Restoring intact ankle kinematics is an important step in restoring normal function to the joint. Previous robotic laxity testing and functional activity simulation showed the intact and implanted motion of the tibia relative to the calcaneus is similar. However there is limited data on the tibiotalar joint in either the intact or implanted state. This current study compares modern anatomically designed TAA to intact tibiotalar motion. Method. A robotic testing system including a 6 DOF load cell (AMTI, Waltham, MA) was used to evaluate a simulated functional activity before and after implantation of a modern anatomically designed TAA (Figure 1). An experienced foot and ankle surgeon performed TAA on five fresh-frozen cadaveric specimens. The specimen tibia and fibula were potted and affixed to the robot arm (KUKA Robotics Inc., Augsburg, Germany) while the calcaneus was secured to a fixed pedestal (Figure 1). Passive reflective motion capture arrays were fixed to the tibia and talus and a portable coordinate measuring machine (Hexagon Metrology Group, Stockholm, Sweden) established the location of the markers relative to anatomical landmarks palpated on the tibia. A four camera motion capture system (The Motion Monitor, Innovative Sports Training, Chicago, IL) recorded the movement of the tibia and talus. The tibia was rotated from 30 degrees plantar flexion to 15 degrees dorsiflexion to simulate motions during the stance phase of gait. At each flexion angle the robot found the orientation which zeroed all forces and torques except compressive force, which was either 44N or 200N. Results. Preliminary data indicates the tibiotalar motion of the TAA is similar to the intact ankle. The pattern and magnitude of tibiotalar translations and rotations are similar between the intact and implanted states for both 44N and 200N compressive loads (Figure 2). The most variation occurs with internal-external rotation. Increased translation especially in the anterior-posterior directions was observed in plantarflexion while the mediolateral translation remained relatively centered moving less than a millimeter. The intact talus with respect to the calcaneus had less than 3 degrees of rotation over the whole arc of ankle flexion (Figure 3). The angular motion of the implanted talus was similar in pattern to the intact talus, however there were offsets in all three angular directions which changed depending on the loading (Figure 3). This indicates that most of the motion that occurs between the intact tibial calcaneal complex occurs in the tibiotalar joint. Conclusion. Although more investigation is required, this study adds to the limited available tibiotalar kinematic data. This current study suggests the anatomical TAA design allows the tibiotalar joint to behave in similar way to the intact tibiotalar joint. Restoring intact kinematics is an important step in restoring normal function to the joint. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_14 | Pages 60 - 60
1 Mar 2013
Firth G Passmore E Sangeux M Graham H
Full Access

Purpose of Study. In children with spastic diplegia, surgery for equinus has a high incidence of both over and under correction. We wished to determine if conservative (mainly Zone 1) surgery for equinus gait, in the context of multilevel surgery, could result in the avoidance of calcaneus and crouch gait as well as an acceptable rate of recurrent equinus, at medium term follow-up. Description of Methods. This was a retrospective, consecutive cohort study of children with spastic diplegia, between 1996 and 2006. All children had distal gastrocnemius recession or differential gastrocsoleus lengthening, on one or both sides, as part of Single Event Multilevel Surgery. The primary outcome measures were the Gait Variable Scores (GVS) and Gait Profile Score (GPS) at two time points after surgery. Summary of Results. Forty children with spastic diplegia, GMFCS Level II and III were eligible for inclusion in this study. There were 25 boys and 15 girls, mean age 10 years at surgery. The mean age at final follow-up was 17 years and the mean postoperative follow-up period was seven years. The mean ankle GVS improved from 18.5° before surgery to 8.7° at short term follow-up (P<0.005) and 7.8° at medium term follow-up. Equinus gait was successfully corrected in the majority of children with a low rate of over-correction (2.5%) but a high rate of recurrent equinus (35.0%), as determined by sagittal ankle kinematics. Conclusion. Surgery for equinus gait, in children with spastic diplegia, was successful in the majority of children, at a mean follow-up of seven years, when combined with multilevel surgery, orthoses and rehabilitation. No patients developed crouch gait and the rate of revision surgery for recurrent equinus was 12.5%. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 85 - 85
1 Oct 2012
D'Angeli V Visentini A Belvedere C Leardini A Romagnoli M Giannini S
Full Access

Restoration of natural range and pattern of motion is the primary goal of joint replacement. In total ankle replacement, proper implant positioning is a major requirement to achieve good clinical results and to prevent instability, aseptic loosening, meniscal bearing premature wear and dislocation at the replaced ankle. The current operative techniques support limitedly the surgeon in achieving a best possible prosthetic component alignment and in assessing proper restoration of ligament natural tensioning, which could be well aided by computer-assisted surgical systems. Therefore the outcome of this replacement is, at present, mainly associated to surgeon's experience and visual inspection. In some of the current ankle prosthetic designs, tibial component positioning along the anterior/posterior (A/P) and medio/lateral axes is critical, particularly in those designs not with a flat articulation between the tibial and the meniscal or talar components. The general aim of this study was assessing in-vitro the effects of the A/P malpositioning of the tibial component on three-dimensional kinematics of the replaced joint and on tensioning of the calcaneofibular (CaFiL) and tibiocalcaneal (TiCaL) ligaments, during passive flexion. Particularly, the specific objective is to compare the intact ankle kinematics with that measured after prosthesis component implantation over a series of different positions of the tibial component. Four fresh-frozen specimens from amputation were analysed before and after implantation of an original convex-tibia fully-congruent three-component design of ankle replacement (Box Ankle, Finsbury Orthopaedics, UK). Each specimen included the intact tibia, fibula and ankle joint complex, completed with entire joint capsule, ligaments, muscular structures and skin. The subtalar joint was fixed with a pin protruding from the calcaneus for isolating tibiotalar joint motion. A rig was used to move the ankle joint complex along its full range of flexion while applying minimum load, i.e. passive motion. In these conditions, motion at the ankle was constrained only by the articular surfaces and the ligaments. A stereofotogrammetric system for surgical navigation (Stryker-Leibinger, Freiburg, Germany) was used to track the movement of the talus/calcaneus and tibial segments, by using trackers instrumented with five active markers. Anatomical based kinematics was obtained after digitization by an instrumented pointer of a number of anatomical landmarks and by a standard joint convention. The central point of the attachment areas of CaFiL e TiCaL was also digitised. Passive motion and ankle joint neutral position were acquired, and the standard operative technique was performed to prepare the bones for prosthesis component implantation. The final component for the talus was implanted, the tibial component was initially positioned well in front of the nominal right (NR) position, the meniscal bearing was instrumented with an additional special tracker, and passive motion was collected again in passive flexion. Data collection was repeated for progressively more posterior locations for the tibial component, for a total of six different locations along the tibial A/P axis: three anterior (PA), the NR, and two more posterior (PP), approximately 3 to 5 mm far apart each. The following three-dimensional kinematics variables were analyzed: the three anatomical components of the ankle joint (talus-to-tibial) rotation (dorsi/plantar flexion, prono/supination and internal/external rotation respectively in the sagittal, frontal and transverse planes), the meniscal bearing pose with respect to the talar and tibial components, the ‘ligament effective length fraction’ as the ratio between the instantaneous distance between the ligament attachment points and the corresponding maximum distance, and the instantaneous and mean helical axes in the tibial anatomical reference frame. In all specimens and in all conditions, physiological ranges of flexion, prono/supination and internal/external rotation were observed at the ankle joint. A good restoration of motion was observed at the replaced joint, demonstrated also by the coupling between axial rotation and flexion and the physiological location of the mean helical axis, in all specimens and in most of the component positions. Larger plantar- and smaller dorsi-flexion were observed when the tibial component was positioned more anteriorly than NR, and the opposite occurred for more posterior positions. In regards to the meniscal bearing, rotations were small and followed approximately the same patterns of the ankle rotations, accounted for the full conformity of the articulating surfaces. Translations in A/P were larger than in other directions, the bearing moving backward in plantarflexion and forward in dorsiflexion with respect to both components. It was observed that the closer to NR the position of the tibial component is, the larger this A/P motion is, accounted mainly to the associated larger range of flexion. The change of CaFiL and TiCaL effective length fraction over the flexion arc was found smaller than 0.1 in three specimens, smaller than 0.2 in the fourth, larger both in more anterior and more posterior locations of the tibial component. The simulated malpositioning did not affect much position and orientation of the mean helical axis in both the transversal and frontal planes. The experimental protocol and measurements were appropriate to achieve the proposed goals. All kinematics variables support the conclusion that the ankle replaced with this original prosthesis behaves as predicted by the relevant computer models, i.e. physiological joint motion and ligament tension is experienced resulting in a considerable A/P motion of the meniscal bearing. These observations are particularly true in the NR postion for the prosthesis, but are somehow correct also in most of the tibial malpositions analysed, in particular those on the back