Most techniques described for the correction of hallux valgus require exposure of the distal aspect of the first metatarsal. A dorsomedial incision is often recommended. Texts counsel against damaging the dorsal digital nerve, as a painful neuroma is an unwelcome surgical complication. Our study on cadavers aimed to investigate the
We have assessed the proximal capsular extension of the ankle joint in 18 patients who had a contrast-enhanced MRI ankle arthrogram in order to delineate the capsular attachments. We noted consistent proximal capsular extensions anterior to the distal tibia and in the tibiofibular recess. The mean capsular extension anterior to the distal tibia was 9.6 mm (4.9 to 27.0) proximal to the anteroinferior tibial margin and 3.8 mm (−2.1 to 9.3) proximal to the dome of the tibial plafond. In the tibiofibular recess, the mean capsular extension was 19.2 mm (12.7 to 38.0) proximal to the anteroinferior tibial margin and 13.4 mm (5.8 to 20.5) proximal to the dome of the tibial plafond. These areas of proximal capsular extensions run the risk of being traversed during the insertion of finewires for the treatment of fractures of the distal tibia. Surgeons using these techniques should be aware of this
The aim of this pilot study was to evaluate the accuracy of two different methods of navigated retrograde drilling of talar lesions. Artificial osteochondral talar lesions were created in 14 cadaver lower limbs. Two methods of navigated drilling were evaluated by one examiner. Navigated Iso-C3D was used in seven cadavers and 2D fluoroscopy-based navigation in the remaining seven. Of 14 talar lesions, 12 were successfully targeted by navigated drilling. In both cases of inaccurate targeting the 2D fluoroscopy-based navigation was used, missing lesions by 3 mm and 5 mm, respectively. The mean radiation time was increased using Iso-C3D navigation (23 s; 22 to 24) compared with 2D fluoroscopy-based navigation (14 s, 11 to 17).