Aims. The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants. Methods. A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up. Results. Mean CT defined discrepancy (Δ) between planned and achieved AV and IC was 4.5° (SD 3°; 0° to 12°) and 4° (SD 3.5°; 1° to 12°), respectively. Malpositioning (Δ > 10°) occurred in five hips (10.6%). Native COR reconstruction was planned in 42 cases (93%), and the mean 3D deviation vector was 15.5 mm (SD 8.5; 4 to 35). There was no significant influence in malpositioning found for femoral stem retention, surgical approach, or fixation method. Conclusion. At short-term follow-up, we found that PPR offers a viable solution for rTHA in cases with massive acetabular bone loss, as highly accurate positioning can be accomplished with meticulous planning, achieving
Aims. The aim of this study was to compare open reduction and internal fixation (ORIF) with revision surgery for the surgical management of Unified Classification System (UCS) type B periprosthetic femoral fractures around cemented polished taper-slip femoral components following primary total hip arthroplasty (THA). Methods. Data were collected for patients admitted to five UK centres. The primary outcome measure was the two-year reoperation rate. Secondary outcomes were time to surgery, transfusion requirements, critical care requirements, length of stay, two-year local complication rates, six-month systemic complication rates, and mortality rates. Comparisons were made by the form of treatment (ORIF vs revision) and UCS type (B1 vs B2/B3). Kaplan-Meier survival analysis was performed with two-year reoperation for any reason as the endpoint. Results. A total of 317 periprosthetic fractures (in 317 patients) with a median follow-up of 3.6 years (interquartile range (IQR) 2.0 to 5.4) were included. The fractures were type B1 in 133 (42.0%), B2 in 170 (53.6%), and B3 in 14 patients (4.4%). ORIF was performed in 167 (52.7%) and revision in 150 patients (47.3%). The two-year reoperation rate (15.3% vs 7.2%; p = 0.021), time to surgery (4.0 days (IQR 2.0 to 7.0) vs 2.0 days (IQR 1.0 to 4.0); p < 0.001), transfusion requirements (55 patients (36.7%) vs 42 patients (25.1%); p = 0.026), critical care requirements (36 patients (24.0%) vs seven patients (4.2%); p < 0.001) and two-year local complication rates (26.7% vs 9.0%; p < 0.001) were significantly higher in the revision group. The two-year rate of survival was significantly higher for ORIF (91.9% (standard error (SE) 0.023%) vs 83.9% (SE 0.031%); p = 0.032) compared with revision. For B1 fractures, the two-year reoperation rate was significantly higher for revision compared with ORIF (29.4% vs 6.0%; p = 0.002) but this was similar for B2 and B3 fractures (9.8% vs 13.5%; p = 0.341). The most common indication for reoperation after revision was dislocation (12 patients; 8.0%). Conclusion. Revision surgery has higher reoperation rates, longer surgical waiting times, higher transfusion requirements, and higher critical care requirements than ORIF in the management of periprosthetic fractures around polished taper-slip femoral components after THA. ORIF is a safe option providing
The accurate reconstruction of hip anatomy and
biomechanics is thought to be important in achieveing good clinical
outcomes following total hip arthroplasty (THA). To this end some
newer hip designs have introduced further modularity into the design
of the femoral component such that neckshaft angle and anteversion,
which can be adjusted intra-operatively. The clinical effect of
this increased modularity is unknown. We have investigated the changes
in these anatomical parameters following conventional THA with a
prosthesis of predetermined neck–shaft angle and assessed the effect
of changes in the hip anatomy on clinical outcomes. In total, 44 patients (mean age 65.3 years (standard deviation
( The mean pre-operative neck–shaft angle was significantly increased
by 2.8° from 128° ( Cite this article:
Aims. Various surgical techniques have been described for total hip arthroplasty (THA) in patients with Crowe type III dislocated hips, who have a large acetabular bone defect. The aim of this study was to evaluate the long-term clinical results of patients in whom
Background. Hip resurfacing arthoplasty (HRA) showed promising early and mid-terms results at the beginning of the new millennium. Adverse local tissue reactions associated with metal debris considerably slowed down the implantation of HRA which use is now limited to a few specialized centers. The long term success of this procedure, however, is still largely unknown. This study aimed to provide the clinical results of a series of 400 consecutive HRA with a minimum follow-up of 20 years. Methods. All patients treated with Conserve. ®. Plus HRA between November 1996 and November 2000 were retrospectively selected and 355 patients (400 hips) were included. The clinical results of this series was previously reported in 2004 at a follow up of 2 to 6 years[1]. There were 96 women (27%) and 259 men (73%). Mean age at surgery was 48.2 ± 10.9 years. Long-term survivorship was assessed with Kaplan-Meier survival estimates. UCLA hip scores and SF-12 quality of life scores were collected at follow-up visits. Radiographic positioning of the acetabular component was assessed with the computation of the contact patch to rim (CPR) distance. Radiolucencies about the metaphyseal stem and around the acetabular component were recorded to assess the quality of the component fixation. Results. The mean time of follow up was 16.3 ± 5.5 years including 183 hips beyond 20 yrs. Nine hips were lost to follow up (2.2%) Thirty-three patients (35 hips,8.8%) died of causes unrelated to the surgery at a mean 11.9 ± 5.3 years after surgery The mean UCLA hip scores at last follow-up were 9.3 ± 1.0, 9.1 ± 1.4, 9.0 ± 1.8, and 6.9 ± 1.7 for pain, walking, function, and activity, respectively. Post-operative SF-12 scores were 48.4 ± 10.3 for the physical component and 48.5 ± 15.5 for the mental component and did not differ from those of the general US population. Fifty-five patients (60 hips) underwent revision surgery at a mean time of 9.3 ± 5.8 years. Indications for revision surgery included acetabular component loosening (12 hips), femoral component loosening (31 hips), femoral neck fracture (6 hips), wear (6 hips), sepsis (2 hips), recurrent dislocations (1 hip), acetabular component protrusion after over-reaming (1 hip) and unknown (1 hip which was revised in another center). Using any revision as an endpoint, the Kaplan-Meier survivorship was 95.2% at 5 years, 91.2% at 10 years, 87.3% at 15 years, and 83.2% at 20 years. A multivariate model for risk factor analysis showed a diagnosis of developmental dysplasia (p=0.020) and a low body mass index (typically associated with higher levels of activity) (p=0.032), to be significantly related to revision for any reason. Female sex was not a risk factor after adjustment for hip dysplasia and component size was made (Table 1). There was only 1 femoral failure (a late neck fracture 19 years after surgery) among the hips reconstructed with a cemented metaphyseal stem (n=59). Five of the 6 hips (1.5%) with wear-related failures all had mal-positioned sockets (CPR distance <10mm) and were therefore preventable. There were no cases with a high score of aseptic lymphocytic vasculitis-associated lesions (ALVAL)[2], suggesting metal sensitivity. X-ray analysis showed excellent persisting fixation in all but one hip. Conclusions. In this group of patients operated over 20 years ago, HRA keeps providing excellent pain relief and quality of life to the patients. Subsequent progress in the preparation of the femoral head has considerably reduced the failure rate on the femoral side which was the main mode of failure in this initial series[3, 4]. The 83.1% 20 year survivorship of this initial series surpasses that of total hip arthroplasties in use 20 years ago in this young patient population[5]. Life-long durability of the device is anticipated for most of the remaining patients. The established benefits of this procedure, such as a low dislocation rate, an
Custom-made partial pelvis replacements (PPRs) are increasingly used in the reconstruction of large acetabular defects and have mainly been designed using a triflange approach, requiring extensive soft-tissue dissection. The monoflange design, where primary intramedullary fixation within the ilium combined with a monoflange for rotational stability, was anticipated to overcome this obstacle. The aim of this study was to evaluate the design with regard to functional outcome, complications, and acetabular reconstruction. Between 2014 and 2023, 79 patients with a mean follow-up of 33 months (SD 22; 9 to 103) were included. Functional outcome was measured using the Harris Hip Score and EuroQol five-dimension questionnaire (EQ-5D). PPR revisions were defined as an endpoint, and subgroups were analyzed to determine risk factors.Aims
Methods
To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time. We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated.Aims
Methods
This aim of this study was to assess the reliability and validity of the Unified Classification System (UCS) for postoperative periprosthetic femoral fractures (PFFs) around cemented polished taper-slip (PTS) stems. Radiographs of 71 patients with a PFF admitted consecutively at two centres between 25 February 2012 and 19 May 2020 were collated by an independent investigator. Six observers (three hip consultants and three trainees) were familiarized with the UCS. Each PFF was classified on two separate occasions, with a mean time between assessments of 22.7 days (16 to 29). Interobserver reliability for more than two observers was assessed using percentage agreement and Fleiss’ kappa statistic. Intraobserver reliability between two observers was calculated with Cohen kappa statistic. Validity was tested on surgically managed UCS type B PFFs where stem stability was documented in operation notes (n = 50). Validity was assessed using percentage agreement and Cohen kappa statistic between radiological assessment and intraoperative findings. Kappa statistics were interpreted using Landis and Koch criteria. All six observers were blinded to operation notes and postoperative radiographs.Aims
Methods
The main aims were to identify risk factors predictive of a radiolucent line (RLL) around the acetabular component with an interface bioactive bone cement (IBBC) technique in the first year after THA, and evaluate whether these risk factors influence the development of RLLs at five and ten years after THA. A retrospective review was undertaken of 980 primary cemented THAs in 876 patients using cemented acetabular components with the IBBC technique. The outcome variable was any RLLs that could be observed around the acetabular component at the first year after THA. Univariate analyses with univariate logistic regression and multivariate analyses with exact logistic regression were performed to identify risk factors for any RLLs based on radiological classification of hip osteoarthritis.Aims
Methods
Adverse local tissue reactions associated with abnormal wear considerably slowed down the general use of metal-on-metal (MoM) hip resurfacing arthroplasty (HRA), now limited to a few specialized centres. In this study, we provide the clinical results of 400 consecutive MoM HRAs implanted more than 20 years ago in one such centre. A total of 355 patients (400 hips) were treated with Conserve Plus HRA between November 1996 and November 2000. There were 96 female (27%) and 259 male patients (73%). Their mean age was 48.2 years (SD 10.9). The University of California, Los Angeles (UCLA) hip scores and 12-item Short Form Survey (SF-12) quality of life scores were reported. Survivorship was assessed using Kaplan-Meier analyses.Aims
Methods
We evaluated a large database with mechanical failure of a single uncemented modular femoral component, used in revision hip arthroplasty, as the end point and compared them to a control group treated with the same implant. Patient- and implant-specific risk factors for implant failure were analyzed. All cases of a fractured uncemented modular revision femoral component from one manufacturer until April 2017 were identified and the total number of implants sold until April 2017 was used to calculate the fracture rate. The manufacturer provided data on patient demographics, time to failure, and implant details for all notified fractured devices. Patient- and implant-specific risk factors were evaluated using a logistic regression model with multiple imputations and compared to data from a previously published reference group, where no fractures had been observed. The results of a retrieval analysis of the fractured implants, performed by the manufacturer, were available for evaluation.Aims
Methods
We report the use of a 15° face-changing cementless
acetabular component in patients undergoing total hip replacement
for osteoarthritis secondary to developmental dysplasia of the hip.
The rationale behind its design and the surgical technique used
for its implantation are described. It is distinctly different from
a standard cementless hemispherical component as it is designed
to position the bearing surface at the optimal angle of inclination,
that is, <
45°, while maximising the cover of the component by
host bone.
We have undertaken a prospective, randomised study to compare conservation of acetabular bone after total hip replacement and resurfacing arthroplasty of the hip. We randomly assigned 210 hips to one of the two treatment groups. Uncemented, press-fit acetabular components were used for both. No significant difference was found in the mean diameter of acetabular implant inserted in the groups (54.74 mm for total hip replacement and 54.90 mm for resurfacing arthroplasty). In seven resurfacing procedures (6.8%), the surgeon used a larger size of component in order to match the corresponding diameter of the femoral component. With resurfacing arthroplasty, conservation of bone is clearly advantageous on the femoral side. Our study has shown that, with a specific design of acetabular implant and by following a careful surgical technique, removal of bone on the acetabular side is comparable with that of total hip replacement.
We have compared the biomechanical nature of the reconstruction of the hip in conventional total hip arthroplasty (THA) and surface replacement arthroplasty (SRA) in a randomised study involving 120 patients undergoing unilateral primary hip replacement. The contralateral hip was used as a control. Post-operatively, the femoral offset was significantly increased with THA (mean 5.1 mm; −2.8 to 11.6) and decreased with SRA (mean −3.3 mm; −8.9 to 8.2). Femoral offset was restored within Restoration of the normal proximal femoral anatomy was more precise with SRA. The enhanced stability afforded by the use of a large-diameter femoral head avoided over-lengthening of the limb or increased offset to improve soft-tissue tension as occurs sometimes in THA. In a subgroup of patients with significant pre-operative deformity, restoration of the normal hip anatomy with lower pre-operative femoral offset or significant shortening of the leg was still possible with SRA.