The Vancouver classification separates periprosthetic femur fractures after THA into three regions (A - trochanteric, B - around or just below the stem, and C - well below the stem), with fractures around or just below the stem further separated into those with a well-fixed (B1) or loose stem and good (B2) or poor (B3) bone stock. Trochanteric fractures may be associated with osteolysis and require treatment that addresses osteolysis as well as ORIF of displaced fractures. Fractures around a well-fixed stem can be treated with ORIF using cerclage or cable plating, while those around a loose stem require implant revision usually to a longer cementless tapered or distally porous coated cementless stem. Fractures around a loose stem with poor bone stock in which salvage of the proximal femur is not possible require replacement of the proximal femur with an
The unacceptable failure rate of cemented femoral revisions led to many different cementless femoral designs employing fixation in the damaged proximal femur with biological coatings limited to this area. The results of these devices were uniformly poor and were abandoned for the most part by the mid-1990's. Fully porous coated devices employing distal fixation in the diaphysis emerged as the gold standard for revisions with several authors reporting greater than 90% success rate 8–10 years of follow-up. Surgical techniques and ease of insertion improved with the introduction of the extended trochanteric osteotomy as well as curved, long, fully porous coated stems with diameters up to 23mm. The limits of these stems were stretched to include any stem diameter in which even 1–2cm of diaphyseal contact could be achieved. When diaphyseal fixation was not possible (Type IV), the alternatives were either impaction grafting or
The technique involves impaction of cancellous bone into a cavitary femur. If segmental defects are present, the defects can be closed with stainless steel mesh. The technique requires retrograde fill of the femoral cavity with cancellous chips of appropriate size to create a new endomedullary canal. By using a set of trial impactors that are slightly larger than the real implants the cancellous bone is impacted into the tube. Subsequent proximal impaction of bone is performed with square tip or half moon impactors. A key part of the technique is to impact the bone tightly into the tube especially around the calcar to provide optimal stability. Finally a polished tapered stem is cemented using almost liquid cement in order to achieve interdigitation of the implant to the cancellous bone. The technique as described is rarely performed today in many centers around the world. In the US, the technique lost its interest because of the lengthy operative times, unacceptable rate of peri-operative and post-operative fractures and most importantly, owing to the success of tapered fluted modular stems. In centers such as Exeter where the technique was popularised, it is rarely performed today as well, as the primary cemented stems used there, rarely require revision. There is ample experience from around the globe, however, with the technique. Much has been learned about the best size and choice of cancellous graft, force of impaction, surface finish of the cemented stem, importance of stem length, and the limitations and complications of the technique. There are also good histology data that demonstrate successful vascularization and incorporation of the impacted cancellous bone chips and host bone. Our experience at the clinic was excellent with the technique as reported in CORR in 2003 by M Cabanela. The results at mid-term demonstrated minimal subsidence and good graft incorporation. Six of 54 hips, however, had a post-operative distal femoral fracture requiring ORIF. The use of longer cemented stems may decrease the risk of distal fracture and was subsequently reported by the author after reviewing a case series from Exeter. Today, I perform this technique once or twice per year. It is an option in the younger patient, where bone restoration is desired. Usually in a Paprosky Type IV femur, where a closed tube can be recreated and the proximal bone is reasonable. If the proximal bone is of poor quality, then I prefer to perform a transfemoral osteotomy, and perform an
Vancouver A: If minimal displacement and prosthesis stable can treat nonoperatively. If displacement is unacceptable and/or osteolysis is present consider surgery. AL: Rare, avulsions from osteopenia and lysis. If large, displaced and include large portion of calcar-can destabilise stem and prompt femoral revision. AG: More common. Often secondary to lysis. Does not usually affect implant stability. Minimal displacement. Treat closed × 3 months. Revise later is needed to remove the particle generator, debride defects and bone graft. Displaced with good host bone stock. Consider early ORIF and bone grafting. Vancouver B:. B1: Rarely non-operative. ORIF with femoral component retention. Need to carefully identify stem fixation. B2's classified as B1's are doomed to fail. B1's correctly identified treated with plate, allograft struts or both. High union rates with component retention. B2: Femoral revision +/− strut allograft. Best results seen with patients revised with uncemented, extensively porous coated femoral stems. May use modular, fluted taper stems. B3: Proximal femoral replacement - Tumor prosthesis,
The unacceptable failure rate of cemented femoral revisions led to many different cementless femoral designs employing fixation in the damaged proximal femur with biological coatings limited to this area. The results of these devices were uniformly poor and were abandoned for the most part by the mid 1990's. Fully porous coated devices employing distal fixation in the diaphysis emerged as the gold standard for revisions with several authors reporting greater than 90% success rate at 8–10 years of follow-up. Surgical techniques and ease of insertion improved with the introduction of the extended trochanteric osteotomy as well as curved, long, fully porous coated stems with diameters up to 23 mm. The limits of these stems were stretched to include any stem diameter in which even 1–2 cm of diaphyseal contact could be achieved. When diaphyseal fixation was not possible (Type IV), the alternatives were either impaction grafting or