Background. There are many difficulties during performing total hip replacement in high riding DDH. These difficulties include:. In Acetabular part: bony defect in antero lateral acetabular wall/finding true centre of rotation/shallowness of true acetabulum/hypertrophied and thick capsular obstacle between true and false acetabulum. In Femoral part: small diameter femoral shaft/excessive ante version/posterior placement of greater trochanter. anatomic changes in soft tissue & neurovascular around the hip including: adductor muscle contracture/shortening of abductor muscles/risk of sciatic nerve injury following lengthening of the limb after reduction in true acetabulum/vascular injury. The purpose of this lecture is how to manage above problems with using reinforcement ring (ARR) for reconstruction of true acetabulum and step cut L fashion proximal femoral neck shortening osteotomy in a single stage operation. Method. 23 surgeries in 19 patients, including 18 female and one male were performed by me from Jan. 1997 till Dec. 2009. Six patients had bilateral hip dislocation, but till now only four of them had bilateral stepped operation. Left hip was involved in 15 cases (65.2%). The average age was 40 years old. All hips were high riding DDH according to both hartofillokides and crowe classification. Reconstruction of true acetabulum was performed with aid of reinforcement ring and bone graft from femoral head in all cases. Trochantric osteotomy was done in all, followed by fixation with wire in 22 cases which needed two revisions due to symptomatic non union (9%). Hooked plate was use in one case for trochantric fixation. Due to high riding femur, it was necessary to performed femoral shortening in neck area as a step cut L fashion. In two patient, one with bilateral involvement, after excessive limb lengthening following trial reduction, it was necessary to performed concomitant supracondylar femoral shortening. (3 cases = 13%). 22 mm cup & miniature muller DDH stem were used in 18 cases (78.26%). In 5 cases, one bilaterally, non cemented stem and 28 mm cemented cup in ring were used. Primary
Protrusio acetabuli can be either primary or secondary. Primary or idiopathic protrusio is a rare condition of unknown etiology. Secondary protrusio may be associated with rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, osteomalacia, trauma and Paget's disease. Challenges in surgery include: lack of bone stock, deficient medial support to the cup, difficulty in dislocating the femoral head, and medialization of the hip joint center. Several surgical techniques have been described: use of cement alone without bone graft; morselised impacted autograft or allograft with a cemented cup; metal cages, reinforcement rings, and solid grafts. We describe our technique of impaction grafting using autologous bone and a cementless porous-coated hemispherical cup without the use of acetabular rings or cages in patients with an average age of 46 years. Protrusion was graded depending on distance of medial wall from Kohler's line as mild (1–5 mm medial), moderate (6–15 mm medial) and severe if it was more than 15 mm medial to the Kohler's line. All patients were operated in the lateral position using a modified Hardinge's anterolateral approach.
Protrusio acetabuli can be either primary or secondary. Primary or idiopathic protrusio is a rare condition of unknown etiology. Secondary protrusio may be associated with rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, osteomalacia, trauma and Paget's disease. Challenges in surgery include lack of bone stock, deficient medial support to the cup, difficulty in dislocating the femoral head, and medialisation of the hip joint center. Several surgical techniques have been described: use of cement alone without bone graft; morsellised impacted autograft or allograft with a cemented cup; metal cages, reinforcement rings, and solid grafts. We describe our technique of impaction grafting using autologous bone and a cementless porous-coated hemispherical cup without the use of acetabular rings or cages in patients with an average age of 46 years. Protrusion was graded depending on distance of medial wall from Kohler's line as mild (1–5mm medial), moderate (6–15mm medial) and severe if it was more than 15mm medial to the Kohler's line. All patients were operated in the lateral position using a modified Hardinge's anterolateral approach.
Purpose. The hip region is the second most common site for tuberculosis following the spine in children. The aim is to describe the variable radiological patterns of presentation and their resemblance to pyogenic infection, tumours and other benign conditions of bone in children. Methods. The clinical and radiological records of 29 children aged 10 months–13 years with confirmed tuberculosis of the hip region seen between 1990 and 2011 were reviewed retrospectively. Clinical features were pain, limp and flexion, adduction contractures. Abscesses and sinuses were seen in 4 children. The ESR ranged between 7–110 mm/hr. Mantoux was positive in 20 children. All cases were histologically confirmed. Treatment involved biopsy, currettage of bone defects, limited synovectomy and
Protrusio acetabuli can be either primary or secondary. Primary or idiopathic protrusio is a rare condition of unknown etiology. Secondary protrusio may be associated with Rheumatoid Arthritis, Ankylosing spondylitis, osteoarthritis, osteomalacia, trauma and Paget's disease. Challenges in surgery include lack of bone stock, deficient medial support to the cup, difficulty in dislocating the femoral head, and medialisation of the hip joint centre. Several surgical techniques have been described: use of cement alone without bone graft; morsellised impacted autograft or allograft with a cemented cup; metal cages, reinforcement rings, and solid grafts. We describe our technique of impaction grafting using autologous bone and a cementless porous-coated hemispherical cup without the use of acetabular rings or cages in patients with an average age of 46 years. Protrusion was graded depending on distance of medial wall from Kohler's line as mild (1–5 mm medial), moderate (6–15 mm medial) and severe if it was more than 15 mm medial to the Kohler's line. All patients were operated in the lateral position using a modified Hardinge's anterolateral approach.
Arthritis of the hip is a relatively common problem in patients with neuromuscular disorders due to muscle imbalance around the hip from weakness, paralysis, contractures and spasticity. Neuromuscular disorders such as cerebral palsy, Parkinson's disease, poliomyelitis, previous cerebrovascular accident (CVA) and Charcot arthropathy have been considered by many to be contraindications to total hip arthroplasty (THA). The presence of certain anatomic abnormalities (excessive femoral anteversion, acetabular dysplasia, leg length discrepancy (LLD) and coax valga) and significant soft tissue contractures, muscle imbalance, and muscular weakness make THA a challenging surgical procedure in this patient population, and can predispose to dislocation and poor functional outcome following surgery. THA can, however, result in substantial pain relief and functional improvement, and can be safely performed, provided certain technical considerations are addressed. The patient's motor strength and functional status (ambulatory vs. “sitter”) should be carefully assessed preoperatively, since both of these factors may affect the choice of surgical approach and component position. Significant soft tissue contractures should be released at the time of surgery. Although these can be frequently performed “open”, percutaneous
Arthritis of the hip is a relatively common problem in patients with neuromuscular disorders due to muscle imbalance around the hip from weakness, paralysis, contractures and spasticity. Neuromuscular disorders such as cerebral palsy, Parkinson's disease, poliomyelitis, previous cerebrovascular accident (CVA) and Charcot arthropathy have been considered by many to be relative contraindications to total hip arthroplasty (THA). The presence of certain anatomic abnormalities (excessive femoral anteversion, acetabular dysplasia, leg length discrepancy (LLD) and coax valga) and significant soft tissue contractures, muscle imbalance, and muscular weakness make THA a challenging surgical procedure in this patient population, and can predispose to dislocation and poor functional outcome following surgery. THA can, however, result in substantial pain relief and functional improvement in patients with significant hip arthritis and neuromuscular disorders, and can be safely performed, provided certain technical considerations are addressed. The patient's motor strength and functional status (ambulatory vs. “sitter”) should be carefully assessed pre-operatively, since both of these factors may affect the choice of surgical approach and component position. Significant soft tissue contractures should be released at the time of surgery. Although these can be frequently performed “open”, percutaneous
Arthritis of the hip is a relatively common problem in patients with neuromuscular disorders due to muscle imbalance around the hip from weakness, paralysis, contractures and spasticity. Neuromuscular disorders such as cerebral palsy, Parkinson's disease, poliomyelitis, previous cerebrovascular accident (CVA) and Charcot arthropathy have been considered by many to be relative contraindications to total hip arthroplasty (THA). The presence of certain anatomic abnormalities (excessive femoral anteversion, acetabular dysplasia, leg length discrepancy (LLD) and coax valga) and significant soft tissue contractures, muscle imbalance, and muscular weakness make THA a challenging surgical procedure in this patient population, and can predispose to dislocation and poor functional outcome following surgery. THA can, however, result in substantial pain relief and functional improvement in patients with significant hip arthritis and neuromuscular disorders, and can be safely performed, provided certain technical considerations are addressed. The patient's motor strength and functional status (ambulatory vs. “sitter”) should be carefully assessed pre-operatively, since both of these factors may affect the choice of surgical approach and component position. Significant soft tissue contractures should be released at the time of surgery. Although these can be frequently performed “open,” percutaneous
Introduction. Conversion of immovable hip to a total hip arthroplasty provides a solution, improving function, reducing back and knee pain, and slowing degeneration of neighboring joints associated with hip dysfunction while the mobilization by total hip arthroplasty is rather uncommon and challenging surgery. Materials and methods. Since 1998 we have performed 28 uncemented total hip arthroplasties for arthrodesed or ankylotic Hip. Among them 25 hips in 24 patients (four males and 20 females) with minimum of six months follow-up were evaluated. Thirteen hips were arthrodesed and twelve hips were ankylotic. One patient had arthrodesed hip in one side and ankylotic one in the other side. The mean age at the surgery was 63 (42 to 80). Two patients were Jehovah's witnesses. All 13 arthrodeses had been performed at other hospitals due to developmental dysplasia (11 hips), tuberculous coxitis (one hip), and infection after osteotomy (one hip). The underlying disease for the ankylosis was tuberculous coxitis for one hip and dysplastic osteoarthritis for 12 hips. Spongiosa Metal Cup (GHE, ESKA Orthodynamics AG, Lübeck, Germany) was used for 21 hips (screw fixation was added for two hips), Alloclassic Cup (Zimmer GmbH, Winterthur, Switherland) for one hip, Bicon Plus Cup (Smith & Nephew AG, Rotkreuz, Switherland) for one hip, and Müller's Reinforcement Ring (Zimmer GmbH, Winterthur, Switherland) for two hips. The bearing couple was ceramic on ceramic (Biolox forte, Ceramtec AG, Prochingen, Germany) for 14 hips, ceramic on polyethylene for eight hips, and metal on metal for three hips. Spongiosa Metal Stem (GHE, ESKA Orthodynamics AG, Lübeck, Germany) was used for 15 hips, SL Plus Stems (Smith & Nephew AG, Rotkreuz, Switherland) for nine hips, and Alloclassic Stem (Zimmer GmbH, Winterthur, Switherland) for one hip. All surgeries were carried out through an anterolateral approach. Twelve hips required the