Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 203 - 203
1 Mar 2013
Iwai S Kabata T Maeda T Kajino Y Kuroda K Fujita K Tsuchiya H
Full Access

Background. Rotational acetabular osteotomy (RAO) is an effective treatment option for symptomatic acetabular dysplasia. However, excessive lateral and anterior correction during the periacetabular osteotomy may lead to femoroacetabular impingement. We used preoperative planning software for total hip arthroplasty to perform femoroacetabular impingement simulations before and after rotational acetabular osteotomies. Methods. We evaluated 11 hips in 11 patients with available computed tomography taken before and after RAO. All cases were female and mean age at the time of surgery was 35.9 years. All cases were early stage osteoarthritis without obvious osteophytes or joint space narrowing. Radiographic analysis included the center-edge (CE) angle, Sharp's acetabular angle, the acetabular roof angle, the acetabular head index (AHI), cross-over sign, and posterior wall sign. Acetabular anteversion was measured at every 5 mm slice level in the femoral head using preoperative and postoperative computed tomography. Impingement simulations were performed using the preoperative planning software ZedHip (LEXI, Tokyo, Japan). In brief, we created a three-dimensional model. The range of motion which causes bone-to-bone impingement was evaluated in flexion (flex), abduction (abd), external rotation in flex 0°, and internal rotation in flex 90°. The lesions caused by impingement were evaluated. Results. In the radiographic measurements, the CE angle, Sharp's angle, acetabular roof angle, and AHI all indicated improved postoperative acetabular coverage. The cross-over sign was recognized pre- and postoperatively in each case. Acetabular retroversion appeared in one case before RAO and in three cases after RAO. Preoperatively, there was a tendency to reduce the acetabular anteverison angle in the hips from distal levels to proximal. In contrast, there was no postoperative difference in the acetabular anteversion angle at any level. In our simulation study, bone-to-bone impingement occurred in flex (preoperative/postoperative, 137°/114°), abd (73°/54°), external rotation in flex 0°(34°/43°), and internal rotation in flex 90°(70°/36°). Impingement occurred within internal rotation 45°in flexion 90°in two preoperative and eight postoperative cases. The impingement lesions were anterosuperior of the acetabulum in all cases. Discussion. It is easy to make and assess an impingement simulation using preoperative planning software, and our data suggest the simulation was helpful in a clinical setting, though there were some remaining problems such as approximation of the femoral head center and differences in femur movement between the simulation and reality. In the postoperative simulation there was a tendency to reduce the range of motion in flex, abd, and internal rotation in flex 90°. There was a correlation between acetabular anteversion angle and flex. Since impingement occurred within internal rotation 45°in flexion 90°in eight postoperative simulations, we consider there is a strong potential for an increase in femoroacetabular impingement after RAO


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 210 - 210
1 Dec 2013
Yamaguchi J Terashima T
Full Access

[Introduction]. Total hip arthroplasty (THA) markedly improves pain, gait, and activities of daily living for most patients with osteoarthritis. However, pelvic osteotomy has been recommended for young and active patients with hip dysplasia, because THA in that population is associated with high rates of revision THA. The rotational acetabular osteotomy (RAO) of Ninomiya and Tagawa, and the eccentric rotational acetabular osteotomy of Hasegawa for hip dysplasia reportedly are successful in young and active patients. However, even after the surgery of RAO, osteoarthritis developed in some cases and leaded to the conversion to THA. The differences of bone quality of acetabulum have been reported between at the surgery of THA after RAO and at the surgery of primary THA. We should not discuss the results of these two THA equally. The purpose of this study is to report the results of THA after RAO. [Patients and Methods]. We retrospectively reviewed 33 patients (37 hips) treated by total hip arthroplasty after rotational acetabular osteotomy between 1992 and 2012. Five cases were performed RAO with valgus osteotomy. At the time of THA surgery, the overall mean age of the patients was 57.5 years (range, 39–72 years). The average of follow-up period was 7.0 years (range, 8–258 months). One surgeon (TT) evaluated the hips clinically using the Japanese Orthopaedics Association (JOA) score. The radiographic measurements were performed by the other physician (JY) blinded to the clinical scores. Radiographical examination was performed using AP X-ray. We evaluated the presence of osteolysis and loosening of the implants. We evaluated the stability of stem implants using Engh classification and of cup implants using Hodgkinson classification. [Results]. The cases of this study were converted to THA in an average 17.2 years after the surgery of RAO. JOA score was 55.7 points before THA and 86.7 points at the final follow-up. Osteolysis were found in five cases. Thirty-three cases showed good implant stability, but four cases showed fibrous union between cup and acetabulum. Three cases were converted to the revision THA due to fibrous union. All revision cases were acetabular side. [Discussion]. There were no reports about results of THA after RAO. Osteotomy should be considered for young patients because of the high rates of revision THA needed owing to prolongation of the average lifespan. McAuley et al reported the results of THA in patients 50 years and younger patients. They described the survival rates for femoral and acetabular components, using any revision as the end point, were 89% at 10-year followup and 60% at 15-year followup. Osteosclerosis of the acetabular roof bone should be careful in the case of THA after RAO. The cancellous bone could hardly be founded, even if the enough reaming was performed. Osteosclerosis may cause the difficulty in ingrowth of new bone into the implant, and lead to fibrous union between the acetabular roof bone and the implant. These two revision cases showed fibrous union before their THA. Primary fixation is very important in the case of THA after RAO. Primary fixation is very important in the case of THA after the RAO


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 18 - 18
1 Apr 2017
Springer B
Full Access

Acetabular fractures, particularly in the geriatric population are on the rise. A recent study indicated a 2.4-fold increase in the incidence of acetabular fractures, with the fastest rising age group, those older than the age of 55. Controversy exists as to the role and indications for total hip arthroplasty (THA), particularly in the acute setting. Three common scenarios require further evaluation and will be addressed. 1.) What is the role of THA in the acute setting for young patients (< 55 years old)? 2.) What is the role and indications for THA in the older patient population (>55 years) and what are surgical tips to address these complex issues? 3.) What are the outcomes of THA in patients with prior acetabular fractures converted to THA?. Acetabular fractures in young patients are often the result of high energy trauma and are a life changing event. In general, preservation of the native hip joint and avoidance of arthroplasty as the first line treatment should be recommended. A recent long-term outcome study of 810 acetabular fractures treated with Open Reduction and Internal Fixation (ORIF) demonstrated 79% survivorship at 20 years with need for conversion to THA as the endpoint. Risk factors for failure were older age, degree of initial fracture displacement, incongruence of the acetabular roof and femoral head cartilage lesions. In selected younger patients, certain fracture types with concomitant injuries to articular surfaces may best be treated by acute THA. In the elderly patient population, acetabular fractures are more likely the result of low energy trauma but often times result in more displacement, comminution and damage to the articular surface. Osteoporosis and generalised poor bone quality make adequate reduction and fixation a challenge in these acute injuries. As such, the role of acute arthroplasty is becoming more widespread. Consideration should be given to delayed arthroplasty in certain patients to allow time for fracture healing followed by THA. However, early mobilization and weight bearing is important in the elderly population and consideration should be given to acute THA. The challenge remains gaining appropriate acetabular fixation in the fractured, osteoporotic bone. Early results showed high complication rates with acetabular fixation. However, newer fixation surfaces and advances in ORIF techniques have led to improved results. In addition, the need for complex acetabular reconstruction with the use of cages or cup cage constructs may be required in this setting. Appropriate 3-D imaging is essential to evaluate the extent of involvement of the anterior and posterior columns as well as the acetabular walls. Mears et al. reported on 57 patients who underwent THA for acute acetabular fracture and reported results at a mean of 8.1 years. 79% of patient reported good or excellent results and no acetabular cups were revised for loosening. One of the more common scenarios is the patient that presents with a prior ORIF of an acetabular fracture that has developed post-traumatic arthritis or avascular necrosis of the hip and requires conversion to THA. Challenges in this patient population include dealing with prior hardware that may interfere with THA component fixation, severe stiffness of the joint making exposure difficult and prior heterotopic ossification that may put neurovascular structures at risk. Previous studies have demonstrated lower long-term survivorship of the acetabular component (71% at 20 years) compared to primary THA for osteoarthritis. New acetabular fixation surfaces should mitigate the risk of aseptic loosening in this challenging patient population


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 88 - 88
1 Feb 2017
Dadia S Jaere M Sternheim A Eidelman M Brevadt MJ Gortzak Y Cobb J
Full Access

Background. Dislocation is a common complication after proximal and total femur prosthesis reconstruction for primary bone sarcoma patients. Expandable prosthesis in children puts an additional challenge due to the lengthening process. Hip stability is impaired due to multiple factors: Resection of the hip stabilizers as part of the sarcoma resection: forces acts on the hip during the lengthening; and mismatch of native growing acetabulum to the metal femoral head. Surgical solutions described in literature are various with reported low rates of success. Objective. Assess a novel 3D surgical planning technology by use of 3D models (computerized and physical), 3D planning, and Patient Specific Instruments (PSI) in supporting correction of young children suffering from hip instability after expandable prosthesis reconstruction following proximal femur resection. This innovative technology creates a new dimension of visualization and customization, and could improve understanding of this complex problem and facilitate the surgical decision making and procedure. Method. Two children, both patients with Ewing Sarcoma of the left proximal femur stage-IIB, ages 3/5 years at diagnosis, were treated with conventional chemotherapy followed by proximal femur resection. Both were reconstructed with expandable prosthesis (one at resection and other 4 years after resection). Hip migration developed gradually during lengthening process in the 24m follow up period. 3D software (Mimics, Materialise, Belgium) were used to make computerized 3D models of patients' pelvises. These were used to 3D print 1:1 physical models. Custom 3D planning software (MSk Lab, Imperial College London) allowed surgeons visualizing the anatomical status and assess of problem severity. Thereafter, osteotomies planes and the desired position of acetabular roof after reduction of hip joint were planned by the surgeons. These plans were used to generate 3D printed PSIs to guide the osteotomies during shelf and triple osteotomy surgeries. Accuracy of planning and PSIs were verified with fluoroscopy and post-op X-rays, by comparing cutting planes and post-op position of the acetabulum. Results. Surgeons reported excellent experience with the 3D models (computerized and physical). It helped them in the decision process with an improved understanding of the relationship between prosthesis head and acetabulum, a clear view of the osteophytes and bone formation surrounding the pseudoacetabulum, and osteophytes inside the native acetabulum. These osteophytes were not immediately visible on 2D CT imaging slices. Surgeons reported a good fit and PSIs' simplicity of use. The hip stability was satisfactory during surgery and in the immediate post-op period. X-ray showed a good and centered position of the hip and good levels of the osteotomies. Conclusions. 3D surgical planning and 3D printing was found to be very effective in assisting surgeons facing complex problems. In these particular cases neither CT nor MRI were able to visualize all bony formation and entrapment of prosthesis in the pseudoacetabulum. 3D visualisation can be very helpful for surgical treatment decisions, and by planning and executing surgery with the guidance of PSIs, surgeons can improve their surgical results. We believe that 3D technology and its advantages, can improve success rates of hip stability in this unique cohort of patients


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 71 - 71
1 Feb 2017
Kinoshita K Naito M Yamamoto T
Full Access

Introduction. We perform PAO via a modified Smith-Petersen approach. The purpose of this study was to investigate the result of PAO via a modified Smith-Petersen approach at a minimum 10-years' follow-up. Methods. We retrospectively reviewed 209 hips in 179 patients with acetabular dysplasia who underwent PAO with a modified Smith-Petersen approach from August 1995 to April 2010. Exclusion criteria were as follows: under 10 year follow-up, incomplete clinical or radiographic data. Harris hip score (HHS) was investigated preoperatively, at the time of most improvement and at the final follow-up for clinical evaluation. Tönnis classification was investigated preoperatively and at the final follow-up for evaluation of osteoarthritis. Center edge (CE) angle and acetabular roof obliquity (ARO) were investigated preoperatively, postoperatively and at the final-follow up for radiographic evaluation. Tönnis classification and radiographic parameters were investigated on anterior-posterior radiographs. Patients of conversion of PAO to total hip arthroplasty (THA) were investigated for preparing Kaplan Myer survival analysis. The Wilcoxon signed-rank test was used to compare changes in HHS and radiographic parameters between the preoperative and the postoperative values. Statistical significance was defined a priori as p < 0.05. Results. Eighty-seven hips in 79 patients (44.1%) were included in this study. 100 patients were excluded from this study. The average age of the patients at the time of surgery was 39 years (rang, 15 to 65 years) and the mean follow-up period was 12 years and 2 months (range, 10 years to 18 years and 3 months). The mean HHS improved from 74 points (range, 38 to 98 points) preoperatively to 95 points (range, 62 to 100 points) at the time of most improvement (p < 0.01) and decrease slightly to 89 points (range, 32 to 100 points) at final follow-up. Tönnis classification was as follows: grade 0 was 4 hips preoperatively and 2 hips at the final follow-up, grade 1 was 55 hips preoperatively and 50 hips at the final follow-up, grade 2 was 25 hips preoperatively and 24 hips at the final follow-up, grade 3 was 3 hips preoperatively and 11 hips at the final follow-up. The mean CE angle improved from 5° (range, −19 to 24°) preoperatively to 30° (range, 2 to 56°) postoperatively (p < 0.01) and increased 38° (range, 12 to 68°) at final follow-up. The mean ARO improved from 24° (range, 6° to 45°) preoperatively to 6° (range, −14° to 48°) postoperatively (p < 0.01) and increased to 12° (range, −24 to 45°) at final follow-up. THA was performed on 5 hips in 5 patients (5.7%) after PAO. The mean duration between PAO and THA was 9 years and 6 months (range, 1 year and 4 months to 15 years 4 months). Ten-year survival rate was 97 % with conversion THA as the end point. Discussion & Conclusion. Clinical data and radiographic parameter were improved in patients who underwent PAO satisfactory. PAO was instrumental as time-saving surgical treatment of symptomatic acetabular dysplasia or slightly osteoarthritis because of 97% survival rate at 10 years


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 75 - 75
1 Feb 2012
Marlow D Gaffey A
Full Access

Background. Paediatric pelvic corrective surgery for developmentally dysplastic hips requires that the acetabular roof is angulated to improve stability and reduce morbidity. Accurate bony positioning is vital in a weight-bearing joint as is appropriate placement of metalwork without intrusion into the joint. This can often be difficult to visualise using conventional image intensifier equipment in a 2D plane. Methods. The ARCADIS Orbic 3D image intensifier produces CT-quality multi-axial images which can be manipulated intra-operatively to give immediate feedback of positioning of internal fixation. The reported radiation dose is 1/5 and 1/30 of a standard spiral CT in high and low quality modes, respectively. Results. We present 15 elective cases of paediatric pelvic osteotomy and fixation of SUFE, with use of the ARCADIS Orbic 3D image intensifier. Images were taken intra-operatively in order to confirm satisfactory fracture reduction and appropriate positioning of fixation devices avoiding joint spaces. This was achieved by 3D reconstruction and review of the surgical field in theatre. In all of the cases appropriate bony placement and position of fixation devices was demonstrated in the multi-axial images and 3D reconstruction. Conclusions. The use of 3D image intensification is a novelty in the UK. Our results suggest that the 3D image intensifier is a valuable aid in the field of paediatric surgery. Accurate positioning of internal fixation devices can be confidently confirmed ‘on-table’. The radiation dose is also significantly less than a standard spiral CT


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 98 - 98
1 May 2016
Oinuma K Tamaki T Kaneyama R Higashi H Miura Y Shiratsuchi H
Full Access

Introduction. Bulk bone grafting is commonly used in total hip arthroplasty (THA) for developmental dysplasia. However, it is a technically demanding surgery with several critical issues, including graft resorption, graft collapse, and cup loosening. The purpose of this study is to describe our new bone grafting technique and review the radiographic and clinical results. Patients and Methods. We retrospectively reviewed 105 hips in 89 patients who had undergone covered bone grafting (CBG) in total hip arthroplasty for developmental dysplasia. We excluded patients who had any previous surgeries or underwent THA with a femoral shortening osteotomy. According to the Crowe classification, 6 hips were classified as group I, 39 as group II, 40 as group III, and 20 as group IV. Follow-up was at a mean of 4.1 (1 ∼ 6.9) years. The surgery was performed using the direct anterior approach. The acetabulum was reamed as close to the original acetabulum as possible. The pressfit cementless cup was impacted into the original acetabulum. After pressfit fixation of the cup was achieved, several screws were used to reinforce the fixation. Indicating factor for using CBG was a large defect where the acetabular roof angle was more than 45 degrees and the uncovered cup was more than 2 cm (Fig.1). The superior defect of the acetabulum was packed with a sufficient amount of morselized bone using bone dust from the acetabular reamers. Then, the grafted morselized bone was covered with a bone plate from the femoral head. The bone plate was fixed with one screw to compact the morselized bone graft. The patient was allowed to walk bearing full weight immediately after surgery. We measured the height of the hip center from the teardrop line and the pelvic height on anteroposterior roentgenograms of the pelvis and calculated the ratio of the hip center to the pelvic height. We defined the anatomical hip center as the height of the center less than 15 % of the pelvic height, which was nearly equal to 30 mm, because the mean pelvic height was 210 mm. Results. The mean height of the hip center was 9.8 (4.1∼18.0) % of the pelvic height and the 101 (96.2%) cups were placed within the anatomical hip center. Radiographically, in all patients, the host-graft interface became distinct and the new cortical bone in the lateral part of the plate bone appeared within 1 year after surgery (Fig.2, 3). We observed no absorption of the plate bone graft and no migration of the cup at the last follow-up. Conclusion. CBG technique is simple, because the bone graft is always performed after the pressfit of the cup is achieved. Moreover, patients require no partial weight bearing postoperatively, because the cup is supported by the host bone with the pressfit and additional screws. The CBG technique would be an excellent option for the reconstruction of the acetabulum in patients with severe dysplasia to avoid a high hip center and bulky bone grafting


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 5 - 5
1 Mar 2013
Atsumi T Tamaoki S Nakanishi R Watanabe M Kajiwara T
Full Access

Treatment of the femoral head necrosis with severe extensive collapse in young adults and adolescents are still challenging. We thought preserve the joint and bone stock were important factor for the treatment of femoral head necrosis in young patients. We reviewed the posterior rotational osteotomy for younger patients with severe osteonecrosis. The advantages of posterior rotational osteotomy are; the necrotic area is moved to non-weight bearing portion. The posterior column artery is shifted medially without vascular damage by rotation. Postoperative uncollapsed anterior viable areas are moved to the loaded portion below the acetabular roof in flexed positions. Eighty five hips of 66 young adults (less than 50 years old, mean age; 31 years) with extensive necrosis treated by posterior rotational osteotomy were reviewed with more than 5 year follow up with a mean of 9 years. Results of 13 hips of 12 adolescents (mean age; 14 years) with extensive collapsed necrosis treated by this procedure were also studied with a mean of 6.5 years. A mean degree of posterior rotation was 121. Recollapse was prevented in 77 hips (91%) of adults, and all 13 hips of adolescents on final AP radiographs. Collapsed lesion was remodeled well and resphericity of the postoperative transferred medial collapsed femoral head on final AP radiographs was observed. However, some of the cases were out of indication of the joint preserving procedure showing extensive lesion. In these cases, we performed the MAYO conservative stem for preserving bone stock. Radiological results of 26 hips with osteonecrosis treated by MAYO stem (mean age 42 years, minimum 5 year follow-up. mean; 6.7 years) showed that 2 mm subsidence in one, osteointegration of zone 2, 6 in 93%, no entire lucent line. No hips were revised for late loosening associated with osteolysis. CT imaging indicated that spot welds of zone 2, 6 were found in 100ï¼ï¿½, stress shielding of zone 1, 5 (23.5ï¼ï¿½). These operations were useful particularly for younger patients


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 12 - 12
1 Sep 2012
Hossain M Beard D Murray D Andrew G
Full Access

Introduction. Acetabular cup lucency predicts cup survival. The relationship of subchondral plate removal and cup survival is unclear. Using data from a prospective study conducted between January 1999 and January 2002 we investigated the role of subchondral plate removal in cemented acetabular cup survival at five years. Methods. A number of cemented cups were implanted using antero-lateral and posterior approaches.1400 cups were inserted. 935 cups (67%) were followed up at 5 years and acetabular radiolucency (AR) recorded. Results. F: M ratio was 1.88. The mean age was 66 (range 23–94). 325 cups had AR. AR was commonest in zone 1 (274). 126 cups has AR isolated to zone 1 only. AR ranged from 1–3 mm. Bone surface was clean and dry in 780 cases. High viscosity cement was used in 1391cases. Simplex was the commonest cement used (749) followed by CMW1 (347). Conventional UHMWPE acetabular liner was used in 755 and “Duration” in 644 patients. 719 Exeter cups and 363 flanged cups were inserted. Acetabular roof was decorticated in 844 and cement pressurised in 1269 cups. AR was more common if cement was not pressurised (52/78 not pressurised vs 268/850 pressurised, p=0.000), if subchondral plate was removed (219/561, p=0.002), and if Simplex or CMW1 was used instead of Palacos (p=0.000). AR after subchondral plate removal was equally common in the young and the older patients (>65 years). There was no difference in cup (p=0.55) or pressuriser type (p= 0.45) between those with or without AR. In a logistic regression model only cement pressurisation and type of cement used were predictive of AR (n=895, p=0.000). Subchondral bone removal became insignificant (p=0.443). Discussion. AR was only affected by cement pressurisation and type of cement used. Subchondral plate removal did not prove likely to affect 5 year cup survival


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 23 - 23
1 Jun 2012
Cho YJ Kwak SJ Chun YS Rhyu KH Lee SM Yoo MC
Full Access

Purpose. To evaluate the clinical and radiologic midterm results of rotational acetabular osteotomy (RAO) in incongruent hip joints. Material and Methods. A consecutive series of 15 hips in 14 patients who underwent RAO in incongruent hip joint were evaluated at an average follow-up of 52.3 months (range from 36 to 101 months). The average age at operation was 27 years (range from 12 to 38 years) old. The preoperative diagnoses were developmental dysplasia in 4 hips, sequelae of Legg-Calvé-Perthes disease in 8 hips, and multiple epiphyseal dysplasia in 3 hips. The RAO procedures were combined with a femoral valgus oseotomy in 10 hips, advance osteotomy of greater trochanter in 4 hips, derotational osteotomy in 2 hips. Clinically, Harris hip score, range of motion, leg length discrepancy(LLD) and hip joint pain were evaluated. Radiological changes of anterior and lateral center-edge(CE) angle, acetabular roof angle, acetabular head index(AHI), ratio of body weight moment arm to abductor moment arm, and a progression of osteoarthritis were analyzed. Results. The Harris hip score ha been improved from average from 67.5 points preoperatively to 97.6 points postoperatively. There have been no significant changes in the range of motion. The anterior CE angle increased from an average of 9.0°(-19.7□18.6°) to 32.5°(22.6□39.1°), the lateral CE angle from 7.6°(-12.1□14.1)° to 31.7°(26.5□37.8°) and the AHI from 61%(33□73%) to 86%(65□100%). The average ratio of body weight moment arm to abductor moment arm was changed 1.88 to 1.49. There was no case showing progression of osteoarthritis. None of the patients experienced revision surgery. Conclusion. The conventional salvage operation, such as Chiari osteotomy, has been recommended in incongruent hip. However, if we can expect to have a congruency after RAO with/without any femoral osteotomies, it would be a hopeful procedure for the incongruent joints by enhancing acetabular coverage, taking joint surface with normal articular cartilage, increasing abductor moment arm with additional improvement in LLD