Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 86 - 86
17 Apr 2023
Aljuaid M Alzahrani S Shurbaji S
Full Access

Acetabular morphology and orientation differs from ethnic group to another. Thus, investigating the natural history of the parameters that are used to assess both was a matter of essence. Nevertheless, clarification the picture of normal value in our society was the main aim of this study. However, Acetabular head index (AHI) and center edge angle (CEA) were the most sensitive indicative parameters for acetabular dysplasia. Hence, they were the main variables used in evaluation of acetabular development. A cross-sectional retrospective study that had been done in a tertiary center. Computed tomography abdomen scouts’ radiographs of non-orthopedics patients were included. They had no history of pelvic or hips’ related symptoms or fractures in femur or pelvis. Images’ reports were reviewed to exclude those with tumors in the femur or pelvic bones. A total of 81 patients was included with 51% of them were males. The mean of age was 10.38± 3.96. CEA was measured using Wiberg technique, means of CEA were 33.71±6.53 and 36.50±7.39 for males and females, respectively. Nonetheless, AHI means were 83.81±6.10 and 84.66±4.17 for males and females, respectively. On the other hand, CEA was increasing by a factor 0.26 for each year (3-18, range). In addition, positive significant correlation was detected between CEA and age as found by linear regression r 2 0.460 (f(df1,79) =21.232, P ≤0.0001). Also, Body mass index (BMI) was positively correlated with CEA r 0.410, P 0.004). This study shows that obesity and aging are linked to increased CEA. Each ethnic group has its own normal values that must be studied to avoid premature diagnosis


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 136 - 136
1 Nov 2018
Elghobashy O Hadrawi A Alharbi H Dawood A Kutty S Gaine W
Full Access

Late presentation of DDH continues to remain a major problem particularly in the developing countries. Femoro-Acetabular Zones (FAZ) system is created to find a relation between acetabular maturity and severity of dislocation, in one hand, and the success of closed reduction, on the other hand. We hypnosis that the lower the acetabular index and the closer the femoral head to the acetabulum, the more likely the success of treatment. Thus, a retrospective study was performed on late diagnosed DDH hips that underwent closed treatment at a particular hospital in the Middle East. FAZ are drawn on the AP view of the pelvic x-ray and is based on a perpendicular from the acetabular index at the lateral margin of the superior acetabular rim then another perpendicular to Perkin's line is drawn. This gives three zones, graded I-III. The center of femoral metaphysis is identified denoting the position of the femoral head in relation to the zone classification. FAZ system was applied on 65 pelvic radiographs; mean patient age was 24 months (range: 12 to 36 months) with a minimum follow up of 3 years. Overall, 37 of 65 hips (57%) achieved a satisfactory outcome (Severin I&II), while 22 hips (33%) were found to be unsatisfactory (Severin III). 6 hips (10%) needed an open reduction (p-value 0.001). FAZ could perfectly predict the successful cases. FAZ system is a simple and novel classification and if employed, could reasonably predict the outcome of non-surgical treatment of DDH after walking age


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 12 | Pages 1703 - 1709
1 Dec 2010
Aoki H Nagao Y Ishii S Masuda T Beppu M

In order to evaluate the relationship between acetabular and proximal femoral alignment in the initiation and evolution of osteoarthritis of the dysplastic hip, the acetabular and femoral angles were calculated geometrically from radiographs of 62 patients with pre-arthrosis and early osteoarthritis. The sum of the lateral opening angle of the acetabulum and the neck-shaft angle was defined as the lateral instability index (LII), and the sum of the anterior opening angle of the acetabulum and the anteversion angle of the femoral neck as the anterior instability index (AII). These two indices were compared in dysplastic and unaffected hips. A total of 22 unilateral hips with pre-arthrosis were followed for at least 15 years to determine whether the two indices were associated with the progression of osteoarthritis.

The LII of the affected hips (197.4 (sd 6.0)) was significantly greater than that of the unaffected hips (1830 (sd 6.9)). A follow-up study of 22 hips with pre-arthrosis showed that only the LII was associated with progression of the disease, and an LII of 196 was the threshold value for this progression.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 1012 - 1018
1 Jul 2005
Beck M Kalhor M Leunig M Ganz R

Recently, femoroacetabular impingement has been recognised as a cause of early osteoarthritis. There are two mechanisms of impingement: 1) cam impingement caused by a non-spherical head and 2) pincer impingement caused by excessive acetabular cover. We hypothesised that both mechanisms result in different patterns of articular damage. Of 302 analysed hips only 26 had an isolated cam and 16 an isolated pincer impingement. Cam impingement caused damage to the anterosuperior acetabular cartilage with separation between the labrum and cartilage. During flexion, the cartilage was sheared off the bone by the non-spherical femoral head while the labrum remained untouched. In pincer impingement, the cartilage damage was located circumferentially and included only a narrow strip. During movement the labrum is crushed between the acetabular rim and the femoral neck causing degeneration and ossification.

Both cam and pincer impingement lead to osteoarthritis of the hip. Labral damage indicates ongoing impingement and rarely occurs alone.