Advertisement for orthosearch.org.uk
Results 1 - 20 of 25
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 24 - 24
1 Apr 2019
Hettich G Schierjott RA Schilling C Maas A Ramm H Bindernagel M Lamecker H Grupp TM
Full Access

Introduction. Acetabular bone defects are still challenging to quantify. Numerous classification schemes have been proposed to categorize the diverse kinds of defects. However, these classification schemes are mainly descriptive and hence it remains difficult to apply them in pre-clinical testing, implant development and pre-operative planning. By reconstructing the native situation of a defect pelvis using a Statistical Shape Model (SSM), a more quantitative analysis of the bone defects could be performed. The aim of this study is to develop such a SSM and to validate its accuracy using relevant clinical scenarios and parameters. Methods. An SSM was built on the basis of segmented 66 CT dataset of the pelvis showing no orthopedic pathology. By adjusting the SSM's so called modes of shape variation it is possible to synthetize new 3D pelvis shapes. By fitting the SSM to intact normal parts of an anatomical structure, missing or pathological regions can be extrapolated plausibly. The validity of the SSM was tested by a Leave-one-out study, whereby one pelvis at a time was removed from the 66 pelvises and was reconstructed using a SSM of the remaining 65 pelvises. The reconstruction accuracy was assessed by comparing each original pelvis with its reconstruction based on the root-mean-square (RMS) surface error and five clinical parameters (center of rotation, acetabulum diameter, inclination, anteversion, and volume). The influence of six different numbers of shape variation modes (reflecting the degrees of freedom of the SSM) and four different mask sizes (reflecting different clinical scenarios) was analyzed. Results. The Leave-one-out study showed that the reconstruction errors decreased when the number of shape variation modes included in the SSM increased from 0 to 20, but remained almost constant for higher numbers of shape variation modes. For the SSM with 20 shape variation modes, the RMS of the reconstruction error increased with increasing mask size, whereas the other parameters only increased from Mask_0 to Mask_1, but remained almost constant for Mask_1, Mask_2 and Mask_3. Median reconstruction errors for Mask_1, Mask_2, and Mask_3 were approximately 3 mm in Center of Rotation (CoR) position, 2 mm in Diameter, 3° in inclination and anteversion, as well as 5 ml in volume. Discussion. This is the first study analyzing and showing the feasibility of a quantitative analysis of acetabular bone defects using a SSM-based reconstruction method in the clinical scenario of a defect or implant in both acetabuli and incomplete CT-scans. Validation results showed acceptable reconstruction accuracy, also for clinical scenarios in which less healthy bone remains. Further studies could apply this method on a larger number of defect pelvises to obtain quantitative measures of acetabular bone defects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 52 - 52
23 Feb 2023
Full Access

THA in patients with acetabular bone defects is associated with a high risk of dislocation. Dual mobility (DM) cups are known to prevent and treat chronic instability. The aim of this study was to evaluate the dislocation rate and survival of jumbo DM cups. This was a retrospective, continuous, multicenter study of all the cases of jumbo DM cup implantation between 2010 and 2017 in patients with acetabular bone loss (Paprosky 2A: 46%, 2B: 32%, 2C: 15% and 3A: 6%). The indications for implantation were revisions for aseptic loosening of the cup (n=45), aseptic loosening of the femoral stem (n=3), bipolar loosening (n=11), septic loosening (n=10), periprosthetic fracture (n=5), chronic dislocation (n=4), intraprosthetic dislocation (n=2), cup impingement (n=1), primary posttraumatic arthroplasty (n=8), and acetabular dysplasia (n=4). The jumbo cups used were COPTOS TH (SERF), which combines press-fit fixation with supplemental fixation (acetabular hook, two superior flanges with one to four screws, two acetabular pegs). A bone graft was added in 74 cases (80%). The clinical assessment consisted of the Harris hip score. The primary endpoint was surgical revision for aseptic acetabular loosening or the occurrence of a dislocation episode. In all, 93 patients were reviewed at a mean follow-up of 5.3 ± 2.3 years [0, 10]. As of the last follow-up, the acetabular cup had been changed in five cases: three due to aseptic loosening (3.2%) and two due to infection (2.1%). The survivorship free of aseptic loosening was 96.8%. Three patients (3%) suffered a dislocation. At the last follow-up visit, the mean HSS scores were 72.15, (p < 0.05). Use of a jumbo DM cup in cases of acetabular bone defects leads to satisfactory medium-term results with low dislocation and loosening rates


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 7 - 7
1 Feb 2020
Hettich G Schierjott R Graichen H Jansson V Rudert M Traina F Weber P Grupp T
Full Access

Introduction. Revision total hip arthroplasty is often associated with acetabular bone defects. In most cases, assessment of such defects is still qualitative and biased by subjective interpretations. Three-dimensional imaging techniques and novel anatomical reconstructions using statistical shape models (SSM) allow a more impartial and quantitative assessment of acetabular bone defects [1]. The objectives of this study are to define five clinically relevant parameters and to assess 50 acetabular bone defects in a quantitative way. Methods. Anonymized CT-data of 50 hemi-pelvises with acetabular bone defects were included in the study. The assessment was based on solid models of the defect pelvis (i.e. pelvis with bone defect) and its anatomical reconstruction (i.e. native pelvis without bone defect) (Fig.1A). Five clinically relevant parameters were defined: (1) Bone loss, defined by subtracting defect pelvis from native pelvis. (2) Bone formation, defined by subtracting native pelvis from defect pelvis. Bone formation represents bone structures, which were not present in the native pelvis (e.g. caused by remodeling processes around a migrated implant). (3) Ovality, defined by the length to width ratio of an ellipse fitted in the defect acetabulum. A ratio of 1.0 would represent a circular acetabulum. (4) Lateral center-edge angle (LCE angle), defined by the angle between the most lateral edge of the cranial roof and the body Z-axis, and (5) implant migration, defined by the distance between center of rotation (CoR) of the existing implant and CoR of native pelvis (Fig. 1B). Results. All data are presented as single values as well as median and [25. th. , 75. th. ]- percentile (Fig.2). Bone loss was 53.6 [41.5, 76.7] ml with a minimum of 19.0 ml and maximum of 103.9 ml. Bone formation was 15.7 [10.5, 21.2] ml with a minimum of 3.5 ml and a maximum of 41.6 ml. Ovality was 1.3 [1.1, 1.4] with a minimum of 1.0 and a maximum of 2.0. LCE angle was 30.4° [21.5°, 40.1°] with a minimum of 11.6° and a maximum of 63.0°. Implant migration was 25.3 [15.1, 32.6] mm with a minimum of 5.4 mm and a maximum of 53.5 mm. Discussion. Within this study, 50 hemi-pelvises with acetabular bone defects were successfully quantified using five clinically relevant parameters. Application of this method provides impartial and quantitative data of acetabular bone defects, which could be beneficial in clinical practice for pre-operative planning or comparison of surgical outcomes. Including a larger number of cases, this method could even serve as a basis for a novel classification system for acetabular bone defects. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 25 - 25
1 Oct 2022
Casali M Rani N Cucurnia I Filanti M Coco V Reale D Zarantonello P Musiani C Zaffagnini M Romagnoli M
Full Access

Aim. Aim of this monocentric, prospective study was to evaluate the safety, efficacy, clinical and radiographical results at 24-month follow-up (N = 6 patients) undergoing hip revision surgery with severe acetabular bone defects (Paprosky 2C-3A-3B) using a combination of a novel phase-pure betatricalciumphosphate - collagen 3D matrix with allograft bone chips. Method. Prospective follow-up of 6 consecutive patients, who underwent revision surgery of the acetabular component in presence of massive bone defects between April 2018 and July 2019. Indications for revision included mechanical loosening in 4 cases and history of hip infection in 2 cases. Acetabular deficiencies were evaluated radiographically and CT and classified according to the Paprosky classification. Initial diagnosis of the patients included osteoarthritis (N = 4), a traumatic fracture and a congenital hip dislocation. 5 patients underwent first revision surgery, 1 patient underwent a second revision surgery. Results. All patients were followed-up radiographically with a mean of 25,8 months. No complications were observed direct postoperatively. HHS improved significantly from 23.9 preoperatively to 81.5 at the last follow-up. 5 patients achieved a defined good result, and one patient achieved a fair result. No periprosthetic joint infection, no dislocations, no deep vein thrombosis, no vessel damage, and no complaint about limbs length discrepancy could be observed. Postoperative dysmetria was found to be + 0.2cm (0cm/+1.0cm) compared to the preoperative dysmetria of − 2.4 cm (+0.3cm/−5.7cm). Conclusions. Although used in severe acetabular bone defects, the novel phase-pure betatricalciumphosphate - collagen 3D matrixshowed complete resorption and replacement by newly formed bone, leading to a full implant integration at 24 months follow-up and thus represents a promising method with excellent bone regeneration capacities for complex cases, where synthetic bone grafting material is used in addition to autografts


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 20 - 20
1 Apr 2019
Tang H Zhou Y Zhou B Huang Y Guo S
Full Access

Aims. Severe, superior acetabular bone defects are one of the most challenging aspects to revision total hip arthroplasty (THA). We propose a new concept of “superior extended fixation” as fixation extending superiorly 2 cm beyond the original acetabulum rim with porous metal augments, which is further classified into intracavitary and extracavitary fixation. We hypothesized that this new concept would improve the radiographic and clinical outcomes in patients with massive superior acetabular bone defects. Patients and Methods. Twenty eight revision THA patients were retrospectively reviewed who underwent reconstruction with the concept of superior extended fixation from 2014 to 2016 in our hospital. Patients were assessed using the Harris Hip Score (HHS) and the Western Ontario and McMaster Universities Osteoarthritis Index score (WOMAC). In addition, radiographs were assessed and patient reported satisfaction was collected. Results. At an average follow-up of 28 months (range 18 – 52 months), the postoperative HHS and WOMAC scores were significantly improved at the last follow-up (p < 0.001). The postoperative horizontal and vertical locations of the COR from the interteardrop line were significantly improved from the preoperative measurements (p < 0.001). One (3.6 %) patient was dissatisfied due to periprosthetic joint infection. Conclusion. Extracavitray and intracavitary superior extended fixation with porous metal augments and cementless cups are effective in reconstructing severe superior acetabular bone defects, with promising short-term clinical and radiographic outcome


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 79 - 79
1 Apr 2018
Lee W Han C Yang I Park K
Full Access

Introduction. Reinforcement ring with allograft bone is commonly used for acetabular reconstruction of bone defects because it can achieve stable initial fixation of the prosthesis. It is not clear whether the allograft bone can function as a viable host bone and provide long-standing structural support. The purpose of this study was to assess to long-term survival of the reinforcement rings and allograft bone incorporation after acetabular revisions. Methods. We retrospectively reviewed 39 hips (37 patients) who underwent reconstruction of the acetabulum with a Ganz reinforcement ring and allograft bone in revision total hip arthroplasty. There were 18 females and 19 males with a mean age of 55.9 years (35–74 years). The minimum postoperative follow-up period was 10 years (10∼17 years). We assessed the acetabular bone defect using the Paprosky's classification. We determined the rates of loosening of the acetabular reconstructions, time to aseptic loosening, integration of the allograft bone, resorption of the allograft bone, and survival rate. Aseptic loosening of the acetabular component was defined as a change in the cup migration of more than 5 mm or a change in the inclination angle of more than 5° or breakage of the acetabular component at the time of the follow-up. Graft integration was defined as trabecular remodelling crossing the graft-host interface. Resorption of the allograft bone was classified as minor (<1/3), moderate (1/3–1/2) or severe (>1/2). Kaplan-Meier survivorship analysis was performed for aseptic loosening of the acetabular component. The results. The acetabular bone defects were classified as follows: 8 type II hips (4 type IIB, 4 type IIC), and 31 type III hips (17 type IIIA, 14 type IIIB). Fourteen (35.9%) of 39 hips was defined as aseptic loosening of an acetabular component. Loosening was more frequent in type IIIB (57.1%) than in type IIIA hips (29.4%). Mean time to aseptic loosening of the acetabular reconstructions was 6.3 years in type IIIA and from 5 years in type IIIB defects, respectively. Allograft bone incorporation was satisfactory in 66.7% of hips. There was minor bone resorption in 14.3% and moderate bone resorption in 10.2%. In 9 hips (23.1%), severe resorption of the allograft bone was observed and early component loosening was observed in these cases. The survival rate of acetabular component at 10 years of follow-up was 63.6% (95% confidence interval, 49–77%) with aseptic loosening as endpoints. Conclusions. The long-term survival rate of acetabular revision using the reinforcement ring and allograft bone in the reconstruction of severe acetabular bone defects was unsatisfactorily low due to loosening of acetabular components. Because of unfavorable graft incorporation into a host bone, an alternative component and structural support may be employed in the reconstruction of severe acetabular bone defects


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 70 - 70
1 Jan 2016
Iwase T Ito T Morita D
Full Access

Purpose. The purpose of the present study is to assess 5–10 years' follow-up results after acetabular impaction bone grafting (IBG) in primary cemented total hip arthroplasty (THA) for cases with acetabular bone defect. Patients and methods. We performed 36 primary cemented THA with acetabular IBG in 33 patients between November 2004 and May 2009. As one patient died due to unrelated disease at 6 months after the surgery, 35 hips of 32 patients were included in this study. The average age at the surgery was 62.4 years, and the average follow-up period was 7.9 years (5–10 years). Diagnoses were osteoarthritis due to acetabular dysplasia in 28 hips (26 patients), Rheumatoid arthritis (RA) in 4 hips (3 patients), rapidly destructive coxopathy (RDC) in 1 hip (1 patient), idiopathic acetabular protrusion in 1 hip (1 patient), and acromegaly in 1 hip (1 patient). For clinical assessment, the Merle d'Aubigné and Postel hip score was assessed and degree of post-operative improvement was classified according to their method as very great improvement, great improvement, fair improvement, and failure. Perioperative complications were also recorded. Acetabular bone defects were assessed at the surgery and categorized using AAOS acetabular bone defect classification system. For radiological assessment, anteroposterior radiographs of the bilateral hip joints were analyzed preoperatively and post-operatively. Radiolucent lines (RLL) of more than 2 mm around the acetabular components were assessed using the DeLee and Charnley zone classification. Acetabular component loosening was assessed according to the Hodgkinson et al. classification system, and type 3 (complete demarcation line) and type 4 (migration) were classified as “loosening”. Results. The mean Merle d'Aubigné and Postel hip score improved from 9.8 points before the operation to 15.9 points at the final follow-up. Degree of post-operative improvement was assessed as “very great” in 11 hips, “great” in 23 hips and “fair” in 1 hip. Dislocation, DVT, and infection were recorded in 1 hip, 1 hip, and 1 hip, respectively. Re-operation was performed for the acute infection (without loosening) case at 5.3 years after the primary THA. Acetabular bone defects were classified as segmental defect (AAOS type I) in 29 hips, cavitary defect (AAOS type II) in 3 hips and combined segmental and cavitary defect (AAOS type III) in 3 hips. Metal meshes were used for segmental defects of 29 AAOS type I hips and 2 AAOS type III hips, and for medial wall defect of 1 AAOS III hip. On radiographic assessment, no metal device breakage was detected during the follow-up period. There were no clear lines around the cup and all cups were assessed as stable at the final follow-up. Conclusion. Acetabular impaction bone grafting in primary cemented THA is technically demanding procedure. However, postoperative functional improvement is remarkable and stable radiographic findings were achievable independent from original diagnoses. This procedure is one of useful options to restore acetabular bone deficiency in cemented primary THA for cases with acetabular bone defect


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 79 - 79
1 Feb 2020
Schierjott R Hettich G Ringkamp A Baxmann M Grupp T
Full Access

Introduction. Primary stability is an important factor for long-term implant survival in total hip arthroplasty. In revision surgery, implant fixation becomes especially challenging due the acetabular bone defects, which are often present. Previous studies on primary stability of revision components often applied simplified geometrical defect shapes in a variety of sizes and locations. The objectives of this study were to (1) develop a realistic defect model in terms of defect volume and shape based on a clinically existing acetabular bone defect, (2) develop a surrogate acetabular test model, and (3) exemplarily apply the developed approach by testing the primary stability of a pressfit-cup with and without bone graft substitute (BGS). Materials & Methods. Based on clinical computed tomography data and a method previously published [1], volume and shape information of a representative defect, chosen in consultation with four senior hip revision surgeons, was derived. Volume and shape of the representative defect was approximated by nine reaming procedures with hemispherical acetabular reamers, resulting in a simplified defect with comparable volume (18.9 ml original vs. 18.8 ml simplified) and shape. From this simplified defect (Defect D), three additional defect models (Defect A, B, C) were derived by excluding certain reaming procedures, resulting in four defect models to step-wise test different acetabular revision components. A surrogate acetabular model made of 20 PCF polyurethane foam with the main support structures was developed [2]. For the exemplary test, three series for Defect A were defined: Native (acetabulum without defect), Empty (defect acetabulum without filling), Filled (defect acetabulum with BGS filling). All series were treated with a pressfit-cup and subjected to dynamic axial load in direction of maximum resultant force during level walking. Minimum load was 300 N and maximum load was increased step-wise from 600 N to 3000 N. Total relative motion between cup and foam, consisting of inducible displacement and migration, was assessed with the optical measurement system gom Aramis (gom GmbH, Braunschweig, DE). Results. Total relative motion increased with increasing load, with a maximum of 0.63 mm for Native, 0.86 mm for Filled, and 1.9 mm for Empty. At load stage 1800 N, total relative motion in Empty was 11.0-fold increased in comparison to Native, but could be reduced to a 3.3-fold increase in Filled. Discussion. The objective of this study was to develop a simplified, yet realistic and modular defect model which could be used to step-wise test different treatment strategies. Applicability of the developed test setup was shown by assessing primary stability of a pressfit-cup in a native, empty, and filled situation. The presented method could potentially be used as a modular test setup to compare different acetabular revision components in a standardized way. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 6 - 6
1 Feb 2020
Ando W Hamada H Takao M Sugano N
Full Access

Introduction. Acetabular revision surgery is challenging due to severe bone defects. Burch-Schneider anti-protrusion cages (BS cage: Zimmer-Biomet) is one of the options for acetabular revision, however higher dislocation rate was reported. A computed tomography (CT)-based navigation system indicates us the planned direction for implantation of a cemented acetabular cup during surgery. A large diameter femoral head is also expected to reduce the dislocation rate. The purpose of this study is to investigate short-term results of BS cage in acetabular revision surgery combined with the CT-based navigation system and the use of large diameter femoral head. Methods. Sixteen hips of fifteen patients who underwent revision THA using allografts and BS cage between September 2013 and December 2017 were included in this study with the follow-up of 2.7 (0.1–5.0) years. There were 12 women and three men with a mean age of 78.6 years (range, 59–61 years). The cause of acetabular revision was aseptic loosening in all hips. The failed acetabular cup was carefully removed, and acetabular bone defect was graded using the Paprosky classification. Structural allografts were morselized and packed for all medial or contained defects. In some cases, solid allograft was implanted for segmental defects. BS cage was molded to optimize stability and congruity to the acetabulum and fixed with 6.5 mm titanium screws to the iliac bone. The inferior flange was slotted into the ischium. The upside-down trial cup was attached to a straight handle cup positioner with instrumental tracker (Figure 1) and placed on the rim of the BS cage to confirm the direction of the target angle for cement cup implantation under the CT-based navigation system (Stryker). After removing the cement spacer around the X3 RimFit cup (Stryker) onto the BS cage for available maximum large femoral head, the cement cup was implanted with confirming the direction of targeting angle. Japanese Orthopedic Association score (JOA score) of the hip was used for clinical assessment. Implant position, loosening, and consolidation of allograft were assessed using anterior and lateral radiographies of the pelvis. Results. Fifteen hips had a Paprosky IIIB defect, and one hip had a pelvic discontinuity. JOA score significantly improved postoperatively. No radiolucent lines and no displacement of BS cage could be found in 9 of 15 hips. Consolidation of allografts above the protrusion cage was observed in these patients. Displacement of BS cage (>5mm) was observed in 6 hips and displacement was stopped with allograft consolidation in 5 of 6 hips. The other patient showed lateral displacement of BS cage and underwent revision surgery. Average cup inclination and anteversion angles were 37.7±5.0 degree and 24.6±7.2 degree, respectively. 12 of 16 patients were included in Lewinnek's safe zone. One patient with 32 mm diameter of the femoral head had dislocation at 17 days postoperatively. All patients who received ≥36mm diameter of femoral head showed no dislocation. Conclusions. CT-based navigation system and the use of large femoral head may influence the prevention of dislocation in the acetabular revision surgery with BS cage for severe acetabular bone defects


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 67 - 67
1 Feb 2017
Kim J Baek S Kim S
Full Access

Introduction. The mid- or long-term results of acetabular revision total hip arthroplasty (THA) in Korea are rare. The purpose of this study is to report the mid-term radiographic results (> 5 years) of acetabular revision THA with porous-coated cementless Trilogy. ®. cup (Zimmer, Warsaw, IN, USA). Materials and Methods. Between 1999 and 2010, 77 patients (79 hips) had underwent acetabular revision THA with Trilogy. ®. cup. Eight patients (8 hips) were excluded due to death before 5-year follow-up, and 22 patients (23 hips) were excluded due to less than 5-year follow-up or follow-up loss. Forty-seven patients (48 hips) were included in our study. The mean age was 57.9 years (range, 36 to 76 years) and the mean follow-up was 9.8 years (range 5.0 to 16.2 years). The causes of revision were aseptic loosening in 40 hips, and septic loosening in 8 hips, respectively. Both acetabular and femoral revisions were performed in 14 hips and isolated acetabular revision was done in 34 hips. Preoperetive acetabular bone defect according to Paprosky classification was; 1 in type I, 6 in IIA, 11 in IIB, 9 in IIC, 15 in IIIA, and 6 in IIIB. Results. Radiolucent lines less than 2mm were found in 2 hips; one in zone I, another in zone I, II, III. Four hips (1 in type IIC, 1 in IIIA and 2 in IIIB) showed cup migration greater than 5 mm accompanying change of position greater than 5 degrees. However, these patients did not complain pain and showed fixation by secondary stabilization. The Kaplan-Meier survivorship with aseptic loosening as the end point at 10 years was 92.6% (95% confidence interval [CI], 82.6 – 100) and at 15 years was 83.8 % (95% CI, 69.1 – 98.6), respectively. Non-recurrent dislocations occurred in 4 hips. There were no other complication such as sciatic nerve palsy, infection and deep vein thrombosis. Conclusion. Mid-term radiographic results (>5 years) of acetabular revision THA with porous-coated cementless Trilogy. ®. cup showed durable longevity. However, other options such as anti-protrusio cage or cup-cage construct should be considered in severe acetabular bone defect


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 89 - 89
1 Mar 2017
Plate J Shields J Bolognesi M Seyler T Lang J
Full Access

Introduction. The number of complex revision total hip arthroplasties (THA) is predicted to rise. The identification of acetabular bone defects prior to revision THA has important implications on technique and complexity of acetabular reconstruction. Paprosky et al. proposed a classification system including 3 main types with up to 3 subtypes focused on the integrity of the superior rim of the acetabulum and medial wall. However, the classification system is complex and its reliability has been questioned. The purpose of this study was to evaluate the effectiveness of different radiologic imaging modalities (plain radiographs, 2-D CT, 3-D CT reconstructions) in classifying acetabular defects in revision hip arthroplasty cases and their value of at different levels of orthopaedic training. Methods. Patients treated with revision total hip arthroplasty for acetabular bone defects between 2002–2012 were identified and 22 cases selected that had plain radiographs, 2-D CT and 3-D reconstructions available. Bone defects were classified independently by two fellowship-trained adult reconstruction surgeons. Representative sections were chosen and compiled into a timed presentation. Thirty-five residents from PGY-1 to PGY-5 and 4 attending orthopaedic surgeons were recruited for this study and received a 15-minute introduction to the classification system. Chi square analysis was utilized to examine the influence of image modality and level of training on the correct classification of acetabular bone loss using the Paprosky classification system with alpha=0.05. Results. The correct classification regardless of imaging of PGY levels was 30%. The level of training did not influence the ability to classify an acetabular defect (p=0.918). Correct classification was significantly influenced by the imaging used. Using x-ray led to 37% correctly identified defects, CT scans to 33% and 3D modeling to 30% of correct answers (p<0.001). For Class 1 defects, x-ray imaging had significantly higher number of correct classification (93%) compared to CT scans (67%) and 3D modeling (31%, p<0.001). Similarly, 2A defects were classified correctly with higher frequency on x-ray (49%) compared to CT scans (36%) or 3D modeling (15%, p=0.007). For type 2B, 2C, 3A and 3B defects, the type of imaging did not influence the frequency of correct answer. The level of training did not influence the frequency of correct classification regardless of the type of defect (p<0.05). However, there was a significant difference based on the defect type (p<0.001). Regardless of level of training or imaging, 64% of observers recognized type 1 defects, compared to only 16% correct recognition of 3B defects. Discussion. In the current study using different image modalities, residents regardless of the level of training were only able to classify 30% of defects correctly using the Paprosky classification system of acetabular defects. Using plain x-rays led to an increased number of correct classification, while regular CT scan and 3D CT reconstructions did not improve accuracy. The cost for advanced imaging when using this classification may not be justified. The Paprosky classification system of acetabular defects can be used for treatment decisions; however, it is complex and residents may require increased education in its use and identification of defects


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 84 - 84
1 Jan 2016
Uemura K Takao M Sakai T Nishii T Sugano N
Full Access

Introduction. Support cages are often used for reconstruction of acetabular bone defects in revision total hip arthroplasty. A Burch-Schneider cage is one of the most reliable systems that has shown good clinical results. It has an ischial flange and an iliac plate for screw fixation to the ilium. It is sometimes necessary to bend the flange or the plate to fit the shape of the peri-acetabulum. However, the frequency, indications, and characteristics of bending the flange or plate have not been reported. To clarify them, a simulation study was conducted. Materials and methods. Twenty-five cases with acetabular bone defects of Paprosky type 2, 3, or 4 were the subjects of this study. A 3D template surgical simulation was conducted using 3D surface models of the Burch-Schneider cage and acetabulum. The size of the cage was determined by the size of the cavitary bone defect. Placement of the cage was performed in two ways. One was the iliac plate fitting method, in which fitting of the iliac plate to the ilium was performed first, followed by bending of the ischial flange to keep the flange in the center of the ischium. When bending of the flange was needed, it was bent at the base. The other method was the ischial flange fitting method, in which the ischial flange was inserted from the center of the ischium, followed by bending of the iliac flange to adapt to the ilium. When bending of the plate was needed, it was bent at the base. In both methods, the direction and angle of bending were measured. Results. In the iliac plate fitting method, the cage adapted the acetabulum without bending the ischial flange in 12 cases, and with lateral bending in 11 cases. The bending angle was less than 30° in 8 cases. Three cases required more than 30° of bending and there were also 2 cases which were impossible to fit the acetabulum even with bending the ischial flange. This was due to the large bone defect at the superolateral region of the acetabulum. In the ischial flange fitting method, the cage adapted the acetabulum without bending in 12 cases. The remaining 13 cases required less than 30° of iliac plate lateral bending. Discussion. The iliac plate fitting method is a clinically oriented method since the insertion position of the ischial flange is determined after fitting the provisional cage with an iliac plate. However, in cases with a large bone defect in the superolateral region of the acetabulum, some were impossible to fit. On the other hand, with the ischial flange fitting method, the cage could fit all types of acetabular defects. This suggests that, even in cases with a bone defect in the superolateral region of the acetabulum, the Burch-Schneider cage is a usable instrument. Conclusion. The half of the cases required lateral bending of the ischial flange or iliac plate. If there is a large bone defect at the superolateral region of the acetabulum, the iliac plate may need to be bent


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 58 - 58
1 Feb 2020
Garcia-Rey E Garcia-Cimbrelo E
Full Access

Introduction. Biological repair of acetabular bone defects after impaction bone grafting (IBG) in total hip arthroplasty could facilitate future re-revisions in case of failure of the reconstruction again using the same technique. Few studies have analysed the outcome of these acetabular re-revisions. Patients and Methods. We analysed 34 consecutive acetabular re-revisions that repeated IBG and a cemented cup in a cohort of 330 acetabular IBG revisions. Fresh-frozen femoral head allografts were morselized manually. All data were prospectively collected. Kaplan-Meier survivorship analysis was performed. The mean follow-up after re-revision was 7.2 years (2–17). Intraoperative bone defect had lessened after the first failed revision. At the first revision there were 14 hips with Paprosky 3A and 20 with Paprosky type 3B. At the re-revision there were 5 hips with Paproky 2B, 21 with Paprosky type 3A and 8 with type 3B. Lateral mesh was used in 19 hips. Results. The mean Harris Hip Score improved from 45.4 (6.7) to 77.1 (15.6) at final follow-up. The radiological analysis showed cup migration in 11 hips. The mean appearance time was 25 months (3–72). Of these, migration in three cups was progressive and painful requiring re-revision. Cup tilt was found in all migrated hips. There were one dislocation requiring a cemented dual mobility cup associated with IBG and one infection resolved with resection-arthroplasty. Survival with further cup revision for aseptic loosening was 80.7% (95% Confidence Interval 57.4–100) at 11 years. In all surviving re-revisions trabecular incorporation was observed without radiolucent lines. Conclusion. Biological repair can be obtained by restoring the bone stock, even after successive acetabular reconstructions using IBG and a cemented cup


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 58 - 58
1 Dec 2018
Sigmund IK Önder N Winkler T Perka C Trampuz A Renz N
Full Access

Aim. Two stage revision is the most commonly used surgical treatment strategy for periprosthetic hip infections (PHI). The aim of our study was to assess the intra- and postoperative complications during and after two stage revision using resection arthroplasty between ex- and reimplantation. Method. In this retrospective cohort study, all patients treated with a two stage revision using resection arthroplasty for PHI were included from 2008 to 2014. During the first stage, the prosthesis was removed resulting in a resection arthroplasty without the use a PMMA spacer. During second stage, (cemented or uncemented) reimplantation of the hip prosthesis was performed. The cohort was stratified into two groups according to the length of prosthesis-free interval (≤10 weeks and >10 weeks). Data on complications during explantation, prosthesis-free interval, reimplantation, and after reimplantation was collected. The overall complication rate between both groups was compared using the chi-squared test. The revision-free and infection-free survival was estimated using Kaplan-Meier survival analysis. Results. Overall, 93 patients with hip PJI treated with two-stage revision performing resection arthroplasty were included, 49 had a prosthesis-free interval of ≤10 weeks, and 44 an interval of >10 weeks. A total of 146 complications was documented in the cohort. Patients were followed-up for a mean duration of 42.7 months, range: 13.1 – 104.6 months. Blood loss during reimplantation [n=25], blood loss during explantation [n=23], persistent infection during prosthesis-free interval [n=16], leg length discrepancy [n=13], and reinfection [n=9] were the most common complications. No complication showed a statistically significant difference between both groups except for wound healing disorder after reimplantation, which was more often reported in the group with > 10 weeks interval (p=0.009). A statistically significant increase of periprosthetic bone fractures (p=0.05), blood loss (p=0.039), and total number of complications (p=0.008) was seen with increasing acetabular bone defects (after Paprosky). Infection-free survival rate at 24 months was 93.9% (95% CI: 87.2 – 100) in the group with ≤10 weeks interval and 85.9% (95% CI: 75.4 – 96.4) with an interval of > 10weeks. Conclusions. After two years of follow-up, the infection-free survival rate using resection arthroplasty during two stage revision for PHI was higher in the group with ≤10 weeks interval compared to the group with >10 weeks interval. The most common complications during and after a two stage revision using resection arthroplasty were blood loss during the two surgeries, persistent infection during the prosthesis-free interval, leg length discrepancy, and reinfection


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 88 - 88
1 Dec 2016
Greidanus N Konan S Duncan C Masri B Garbuz D
Full Access

In revision total hip arthroplasty (THA), acetabular reconstruction while dealing with severe bone loss is a challenge. The porous tantalum revision acetabular shells have been in use for the past decade. Several reports have documented successful use at early to mid-term follow up. There is, however, very little literature around the long-term survival and quality of life outcome with the use of these shells. We reviewed the results of 46 acetabular revisions with Paprosky 2 and 3 acetabular bone defects reconstructed with a hemispheric, tantalum acetabular shell and multiple supplementary screws. There were 31 females. Average age at revision was 64 years (range 23–85 years). The mean and median follow up was 11 years (range 10–12 years, SD 1). Morselised femoral allograft was used in 34 hips to fill contained cavitary defectes. Bulk femoral allografting was performed in 2 hips. At a minimum follow-up of 10 (range 10–12) years, the survivorship of the porous tantalum acetabular shell, with revision of the shell as end point was 96%. The minimum 10-year survivorship with hip revision for any reason as end point was 92%. We noted excellent pain relief (mean WOMAC pain 92.6) and good functional outcome (mean WOMAC function 90.3, mean UCLA 5); and generic quality of life measures (mean SF-12 physical component 48.3; mean SF-12 mental component 56.7). Patient satisfaction with pain relief, function and return to recreational activities were noted to be excellent. Cementless acetabular revision with the tantalum acetabular shell demonstrated excellent clinical and quality of life outcomes at minimum 10-year follow-up. As far as we are aware this is the first report of minimum 10-year follow up of use of this technique for revision hip arthroplasty


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 6 - 6
1 Apr 2018
Schulze C Vogel D Bader R Kluess D Haas H
Full Access

Introduction. Modern acetabular cups require a convenient bone stock for sufficient cup fixation. Thereby, fixation stability is influenced by the chosen interference fit of the acetabular cup, the cup surface structure, circularity of the reamed acetabulum and by the acetabular bone quality. The ideal implantation situation of the cup is commonly compromised by joint dysplasia and acetabular bone defects. The aim of the present experimental study was to characterise implant fixation of primary acetabular cups in case of definite acetabular cavity defects. Materials and Methods. For the experimental determination bone substitute blocks (100 × 100 × 50 mm) made of polymethacrylimide (PMI) foam with a density of 7 pcf were used. The created acetabular defect situations were derived from the defect classification according to Paprosky. The defect geometries in the PMI foam blocks were realised by a CNC drilling machine. Thereby the defects are described in the dorso-ventral direction by the angle α and in medio-lateral direction by the angle β (given as angle combination α/β) related to the centre of rotation of the reamed cavity. For the lever-out tests the defect types IIb and IIIa (each with different α and β angles) were considered and compared to the intact fixation situation. Therefore, a macrostructured titanium cup (Allofit, Zimmer GmbH, Wintherthur, Switzerland) with an outer diameter of 56 mm were displacement-controlled (v = 20 mm/min) pushed into the 2 mm diametric under reamed PMI-foam cavities. Three cups were inserted until the cup overhang pursuant to surgical technique was reached. Subsequently the cups were displacement-controlled (v = 20 mm/min) levered out via a rod which was screwed into the implant pole by perpendicular displacement (U. axial. ) of the rod in direction of the defect aperture. The lever-out moments were calculated by multiplying the first occurring force maximum (F. max. ) with the effective lever arm length (l. lever. ), whereby moments caused by the deadweight of the rod were considered. Primary stability was defined by the first maximum lever-out moment. Results. The calculated lever-out moments were in a range from 15.5 ± 1.4 Nm to 1.4 ± 0.5 Nm. Defects with a 90° dorso-ventral opening angle showed 57 ± 17% lower lever-out moments. Defects with a 120° dorso-ventral opening angle showed 80 ± 6% lower lever-out moments compared to the cup fixation into intact cavities. Moreover, medio-lateral angles greater than 20° reduced the lever-out moment by 79 ± 12% compared to the intact cavities. Conclusion. The determined lever-out moments underline the reduction of fixation stability of acetabular cup by loss of circumferential rim and absent of superior wall support of the acetabular bone. Thereby, the fixation stability is influenced by the degree of dorso-ventral and medio-lateral defect manifestation. Hence, the fixation stability depends on the cavity surface and in particular the surface of the bone-implant interface in the fixation zone of the acetabular cup Thus, dorso-ventral defect sizes with greater opening angle than 60° and medio-lateral defect sizes greater than 20° are critically for sufficient fixation of primary acetabular cup implants


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 150 - 150
1 Mar 2017
Shon W Dwivedi C Kim T Kim H
Full Access

Although total hip arthroplasty is highly successful for treatment of osteoarthrosis of hip joint, it is skill demanding surgery to perform and even more challenging in case of revision with bone defects. There are many options available for reconstruction of acetabular bony defects. Here, we evaluate the outcome of acetabular bony defect reconstructed with trabecular metal augments in short term. We performed, 22 revision total hip arthroplasties and 6 primary total hip arthroplasties (total 28 in 28 patients) using trabecular metal augments to reconstruct acetabular defect between 2011 to 2015. Out of these 28 patients, 18 were males and 10 were females. Mean age of these patients was 61.2 years (range: 46 years to 79 years). Pre-operative templating was done for all cases and need for trabecular metal augments was anticipated in all cases. All cases were classified according to Paprosky classification for acetabular bone defects. Out of 28 patients, 3 had type 2B, 1 had type 2C, 18 had type 3A and 6 had type 3B acetabular defects. Post operatively, all patients were followed at regular interval for their clinical and radiological outcome. An average follow up was 20.1 months (range: 6 months to 42.5 months). We assessed clinical outcome in the form of Herris hip score (HHS) and radiological outcomes in form of osteolysis in acetabular zones and osseointegration, according to the criteria of Moore. The average Harris hip score (HHS) was improved from 58.0 preoperatively to 87.2 postoperatively. The average degree of cup abduction at the final follow up was 44.29. The centre of rotation of the hip joint was corrected from average 38.90mm (range: 22.15mm to 66.35mm) above the inter-teardrop line preoperatively to average 23.85mm (range: 11.82mm to 37.69mm) above the inter-teardrop line postoperatively. Out of 28 patients, 18 patients had three or more signs of osseointegration, according to the criteria of Moore, at the time of final follow up. Rest of patients, had one or two signs of osseointegration (5 patients had one sign and 5 patients had two signs). We had no patient with migration or loosening of acetabular components. No patient has osteolysis of acetabulum in any zone. Trabecular metal augments provide good initial stability to acetabular cup as well as helpful to bring down the centre of rotation of the hip joint within limit of 35mm above the inter-teardrop line. They also facilitate osseointegration. Our study showed that the results of the trabecular metal augments in reconstruction of acetabular bony defects were successful even in short term. However, long term study is required for better evaluation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 87 - 87
1 Feb 2017
Kuropatkin G Osin D
Full Access

Managing severe acetabular bone defects during primary and revision total hip arthroplasty is a challenging problem. Standard treatment options for this cases is using of acetabular reconstruction type-Burch-Schneider rings. Unfortunately, the possibility of osseointegration of these implants with surrounding bone has always remained a contentious issue. The emergence in recent years of new designs of trabecular titanium, representing a symbiosis of acetabular reconstructive plates and modular cup helped to solve this problem on a completely new level. The aim of this prospective study is to evaluate the short and mid-term clinical and radiographic outcomes of different types of acetabular revision cups - old and new design. From 2006 to 2015, we performed 48 acetabular reconstruction with reconstruction rings CONTUR Smith and Nephew(group 1) and 34 operations with Delta TT Lima Revision system (group 2). The mean age of patients was 59.2 years (range 30–79). Indications for operations included fractures in acetabular region (10 pat – 12,2 %), acetabular nonunions with bone defects (14 pat – 17,1%), aseptic loosening with multiple dislocation of the primary implants in 38 cases (46,3%) and second stage of infection treatment in 20 cases (24.4%). Clinical and functional outcomes were evaluated by Harris Hip Score (HHS). Bone density in Charnley's zones was measured by dual-energy x-ray absorptiometry. With CONTUR reconstruction rings were used 3 different types of bearing surface articulation (22 metal/polyethylene, 10 ceramic/polyethylene, and 16 oxinium/polyethylenel). With Delta TT Revision system were used metal/poly couples in 22 cases, ceramic/poly in 6 cases, and ceramic/ceramic couple in 4 cases. In two patients with high risk of dislocations were used double mobility system. In all operations with CONTUR rings was used bone impaction grafting to fill cavitary defects (Paprosky 2B-3A), with Delta TT Revision system in 14 cases (41,2%) additionally TT augments were used. In group 1 were 3 dislocations (6,3 %), 2 deep infections (4,2 %) and 4 aceptic loosenings with secondary instability of implants (8,3 %). In group 2 Trabecular Titanium showed a high capacity of osseointegration, providing good results in short-term follow-up. We registered only 2 dislocations (5,8 %) and 1 aceptic loosening (2,9 %). The mean HHS increased from 39.7 (range 23–62) preoperatively to 86.5 (range 68–98) at the last follow-up examination. The implanted cups were radiographically stable at the last follow-up visit (1 and 2 years) without radiolucent lines or periprosthetic osteolysis. Conclusions. Delta Revision TT is a good solution for acetabular reconstruction even when there are cavitary and segmental bone defects. Modularity of this system make it possible to correct inlay position, center of hip rotation and minimising the risk of dislocation


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_14 | Pages 65 - 65
1 Mar 2013
Burger J De Jongh H
Full Access

Purpose. To assess acetabular component fixation by bone ongrowth onto a titanium plasma sprayed surface as used in revision total hip arthroplasty. Acetabular bone defects, a common finding in revision surgery, and their relation to outcome were also investigated. Methods. Clinical and radiological results were evaluated for all revision total hip replacements done between 2006 and 2011 that included the use of a specific revision acetabular component. Forty six hips in 46 patients were followed for an average of 2.5 years (range8 months to 6 years). The acetabular defects were graded according to Paprosky's classification. Results. Two cups needed re-revision for aseptic loosening with a rate of repeat revision of 4% (2 of 46). Only one other (unrevised) cup showed radiographic signs of loosening at the last follow up. Acetabular defects were found to be Paprosky type I in 9, type IIA in 10, type IIB in 9, type IIC in 12, Type IIIA in 2 and type IIIB in 3. Screw fixation was necessary in 72% (33 of 46) to achieve intraoperative stability. Conclusion. This study demonstrated that bone ongrowth onto a titanium plasma sprayed surface can achieve stable fixation in acetabular revision in the presence of contained bone defects. Short to medium term follow-up shows satisfying results. It should however be used with caution where the area of contact with host bone is limited as found in Paprosky type IIIA, IIIB types and pelvic discontinuity. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 4 - 4
1 May 2016
Goto T Hamada D Tsutsui T Wada K Mineta K Sairyo K
Full Access

Introduction. Acetabular reconstruction of a total hip arthroplasty (THA) for a case with severe bone loss is most challenging for surgeon. Relatively high rate of failure after the reconstruction surgery have been reported. We have used Kerboull-type acetabular reinforcement devices with morsellised or bulk bone allografts for these cases. The purpose of this study was to examine the midterm results of revision THA using Kerboull-type acetabular reinforcement devices. Patients and methods. We retrospectively reviewed 20 hips of revision THA (20 patients) between February 2002 and August 2010. The mean age of the patients at the time of surgery was 67.4 years (range 45–78). All of the cases were female. The mean duration of follow-up was 6.5 years (range 2.1–10.4). The reasons of revision surgeries were aseptic loosening in 10 hips, migration of bipolar hemiarthroplasty in 8 hips, and rheumatoid arthritis in 2 hips. We classified acetabular bone defects according to the American Academy of Orthopaedic Surgeons (AAOS) classification; we found two cases of Type II and eighteen cases of Type III. In terms of bone graft, we performed both bulk and morsellised bone grafts in 6 hips and morsellised bone grafts only in 14 hips. We assessed cup alignment using postoperative computed tomography (CT) and The post-operative and final follow-up radiographs were compared to assess migration of the implant. We measured the following three parameters: the angle of inclination of the acetabular device (Fig. 1); the horizontal migration (Fig. 2a); and vertical migration (Fig. 2b). Substantial migration was defined as a change in the angle of inclination of more than 3 degrees or migration of more than 3 mm. The pre- and postoperative hip functions were evaluated using the Japanese Orthopaedic Association (JOA) hip score. Results. The mean cup inclination and anteversion were 38.4 degrees and 10.6 degrees, respectively. The mean change in the angle was 1.9 degrees in inclination of the device. The average horizontal migration was 1.0 mm, and the vertical migration was 2.0 mm. Only one hip showed substantial migration with breakage of the device. This failure case represented a large amount of posterior pelvic tilt in standing position postoperatively. The mean JOA hip score was increased from 46.7 to 74.8. Discussion. Poor outcome using Kerboull-type reinforcement plate with morsellised bone graft only has been demonstrated by many reports. In these literatures, bulk bone graft was recommended particularly in the case of large bone defect such as larger than half of the rounded plate of the device or more than 2 cm of thickness. In our case series, acetabular reconstruction using a Kerboull- type acetabular reinforcement device and bone graft gives satisfactory mid-term results even with morsellized bone graft only. One possible interpretation is that most of our cases had relatively small bone defect according to the staging of severity of the superior segmental bone loss made by Kawanabe et al. We suggest that the progressive posterior pelvic tilt should be considered to be a risk of poor outcome of the acetabular reconstruction using this device. To view tables/figures, please contact authors directly