Introduction:. The lateral radiographs are useful in evaluation of the
INTRODUCTION. Component impingement in total hip arthroplasty (THA) can cause implant damage or dislocation. Dual mobility (DM) implants are thought to reduce dislocation risk, but impingement on metal acetabular bearings may cause femoral component notching. We studied the prevalence of (and risk factors for) femoral notching with DM across two institutions. METHODS. We identified 37 patients with minimum 1-year radiographic follow-up after primary (19), revision (16), or conversion (2) THA with 3 distinct DM devices between 2012 and 2017. Indications for DM included osteonecrosis, femoral neck fracture, concomitant spinal or neurologic pathology, revision or conversion surgery, and history of prosthetic hip dislocation. Most recent radiographs were reviewed and assessed for notching.
Introduction. Pelvic flexion and extension in different body positions can affect acetabular orientation after total hip arthroplasty, and this may predispose patients to dislocation. The purpose of this study was to evaluate functional acetabular component position in total hip replacement patients during standing and sitting. We hypothesize that patients with degenerative lumbar disease will have less pelvic extension from standing to sitting, compared to patients with a normal lumbar spine or single level spine disease. Methods. A prospective cohort of 20 patients with primary unilateral THR underwent spine-to-ankle standing and sitting lateral radiographs that included the lumbar spine and pelvis using EOS imaging. Patients were an average age of 58 ± 12 years and 6 patients were female. Patients had (1) normal lumbar spines or single level degeneration, (2) multilevel degenerative disc disease or (3) scoliosis. We measured
Introduction. Implant position plays a major role in the mechanical stability of a total hip replacement. The standard modality for assessing hip component position postoperatively is a 2D anteroposterior radiograph, due to low radiation dose and low cost. Recently, the EOS® X-Ray Imaging Acquisition System has been developed as a new low-dose radiation system for measuring hip component position. EOS imaging can calculate 3D patient information from simultaneous frontal and lateral 2D radiographs of a standing patient without stitching or vertical distortion, and has been shown to be more reliable than conventional radiographs for measuring hip angles[1]. The purpose of this prospective study was to compare EOS imaging to computer tomography (CT) scans, which are the gold standard, to assess the reproducibility of hip angles. Materials and Methods. Twenty patients undergoing unilateral THA consented to this IRB-approved analysis of post-operative THA cup alignment. Standing EOS imaging and supine CT scans were taken of the same patients 6 weeks post-operatively. Postoperative cup alignment and femoral anteversion were measured from EOS radiographs using sterEOS® software. CT images of the pelvis and femur were segmented using MIMICS software (Materialise, Leuven, Belgium), and component position was measured using Geomagic Studio (Morrisville, NC, USA) and PTC Creo Parametric (Needham, MA). The Anterior Pelvic Plane (APP), which is defined by the two anterior superior iliac spines and the pubic symphysis, was used as an anatomic reference for acetabular inclination and anteversion. The most posterior part of the femoral condyles was used as an anatomic reference for femoral anteversion. Two blinded observers measured hip angles using sterEOS® software. Reproducibility was analysed by the Bland-Altman method, and interobserver reliability was calculated using the Cronbach's alpha (∝) coefficient of reliability. Results. The Bland-Altman analysis of test-retest reliability indicated that the 95% limits of agreement between the EOS and CT measurements ranged from −3° to 4° for acetabular inclination, from −5° to 5° for
The problem associated with ceramic on ceramic total hip replacement (THR) is audible noise. Squeaking is the most frequently documented sound. The incidence of squeaking has been reported to wide range from 0.7 to 20.9%. Nevertheless there is no study to investigate on incidence of noise in computer assisted THR with ceramic on ceramic bearing. The purpose of this study was to determine the incidence and risks factors associated with noise. We retrospectively reviewed 200 patients (202 hips) whom performed computer assisted THR (Orthopilot, B. Braun, Tuttlingen, Germany) with ceramic on ceramic bearing between March 2009 and August 2012. All procedures underwent uncemented THR with posterior approach by single surgeon. All hips implanted with PLASMACUP and EXIA femoral stem (B. Braun, Tuttlingen, Germany). All cases used BIOLOX DELTA (Ceramtec, AG, Plochingen, Germany) ceramic liner and head. The incidence and type of noise were interviewed by telephone using set of questionnaire. Patient's age, weight, height, body mass index, acetabular cup size, femoral offset size determined from medical record for comparing between silent hips and noisy hips. The acetabular inclination angle,
Background. Supine positioning during direct anterior approach total hip arthroplasty (DAA THA) facilitates use of fluoroscopy, which has been shown to improve acetabular component positioning on plane radiograph. This study aims to compare 2- dimensional intraoperative radiographic measurements of acetabular component position with RadLink to postoperative 3- dimensional SterEOS measurements. Methods. Intraoperative fluoroscopy and RadLink (El Segundo, CA) were used to measure acetabular cup position intraoperatively in 48 patients undergoing DAA THA. Cup position was measured on 6-week postoperative standing EOS images using 3D SterEOS software and compared to RadLink findings using Student's t-test. Safe-zone outliers were identified. We evaluated for measurement difference of > +/− 5 degrees. Results. RadLink acetabular cup abduction measurement (mean 43.0°) was not significantly different than 3D SterEOS in the anatomic plane (mean 42.6°, p = 0.50) or in the functional plane (mean 42.7°, p = 0.61) (Fig. 1–2). RadLink
Navigation in total hip arthroplasty has been shown to improve acetabular positioning and can decrease the incidence of mal-positioned acetabular components. The aim of this study was to assess two surgical guidance systems by comparing intra-operative measurements of acetabular component inclination and anteversion with a post-operative CT scan. We prospectively collected intra-operative navigation data from 102 hips receiving conventional THA or hip resurfacing arthroplasty through either a direct anterior or posterior approach. Two guidance systems were used simultaneously: an inertial navigation system (INS) and optical navigation system (ONS).
In 2021, Vigdorchik et al. published a large multicentre study validating their simple Hip-Spine Classification for determining patient-specific acetabular component positioning in total hip arthroplasty (THA). The purpose of our study was to apply this Hip-Spine Classification to a sample of Australian patients undergoing THA surgery to determine the local acetabular component positioning requirements. Additionally, we propose a modified algorithm for adjusting cup anteversion requirements. 790 patients who underwent THA surgery between January 2021 and June 2022 were assessed for anterior pelvic plane tilt (APPt) and sacral slope (SS) in standing and relaxed seated positions and categorized according to their spinal stiffness and flatback deformity. Spinal stiffness was measured using pelvic mobility (PM); the ΔSS between standing and relaxed seated. Flatback deformity was defined by APPt <-13° in standing. As in Vigdorchik et al., PM of <10° was considered a stiff spine. For our algorithm, PM of <20° indicated the need for increased cup anteversion. Using this approach, patient-specific cup anteversion is increased by 1° for every degree the patient's PM is <20°. According to the Vigdorchik simple Hip-Spine classification groups, we found: 73% Group 1A, 19% Group 1B, 5% Group 2A, and 3% Group 2B. Therefore, under this classification, 27% of Australian THA patients would have an elevated risk of dislocation due to spinal deformity and/or stiffness. Under our modified definition, 52% patients would require increased cup anteversion to address spinal stiffness. The Hip-Spine Classification is a simple algorithm that has been shown to indicate to surgeons when adjustments to
Background. Rotational acetabular osteotomy (RAO) is an effective treatment option for symptomatic acetabular dysplasia. However, excessive lateral and anterior correction during the periacetabular osteotomy may lead to femoroacetabular impingement. We used preoperative planning software for total hip arthroplasty to perform femoroacetabular impingement simulations before and after rotational acetabular osteotomies. Methods. We evaluated 11 hips in 11 patients with available computed tomography taken before and after RAO. All cases were female and mean age at the time of surgery was 35.9 years. All cases were early stage osteoarthritis without obvious osteophytes or joint space narrowing. Radiographic analysis included the center-edge (CE) angle, Sharp's acetabular angle, the acetabular roof angle, the acetabular head index (AHI), cross-over sign, and posterior wall sign.
Introduction. Studies of metal-on-metal (MoM) hip resurfacing arthroplasty (HRA) have reported high complication and failure rates due to elevated metal ion levels. These rates were shown to be especially high for the Articular Surface Replacement (ASR) HRA, possibly due to its unique design. Associations between metal ion concentrations and various biological and mechanical factors have been reported. Component positioning as measured by acetabular inclination has been shown to be of especially strong consequence in metal ion production in ASR HRA patients, but few studies have evaluated
Introduction. The posterior condylar axis of the distal femur is the common reference used to describe femoral anteversion. In the context of Total Hip Arthroplasty (THA), this reference can be used to define the native femoral anteversion, as well as the anteversion of the stem. However, these measurements are fixed to a femoral reference. The authors propose that the functional position of the proximal femur must be considered, as well as the functional relationship between stem and cup (combined anteversion) when considering the clinical implications of stem anteversion. This study investigates the post-operative differences between anatomically-referenced and functionally-referenced stem and combined anteversion in the supine and standing positions. Method. 18 patients undergoing pre-operative analysis with the Trinity OPS® planning (Optimized Ortho, Sydney Australia, a division of Corin, UK) were recruited for post-operative assessment. Anatomic and functional stem anteversion in both the supine and standing positions were determined. The anatomic anteversion was measured from CT and referenced to the posterior condyles. The supine functional anteversion was measured from CT and referenced to the coronal plane. The standing functional anteversion was measured to the coronal plane when standing by performing a 3D/2D registration of the implants to a weight-bearing AP X-ray. Further, functional
Surgeons often target the Lewinnek zone (40°±10° of inclination; 15°±10° of anteversion) for acetabular orientation during total hip arthroplasty (THA). However, matching native anteversion (20°-25°) may achieve optimal stability. The purpose of this study was to (1) determine incidence of early dislocation with increased target
Combined acetabular and femoral anteversion (CA) of the hip following total hip arthroplasty (THA) is critical to the hip function and longevity of the components. However, no study has been reported on the accuracy in restoration of CA of the hip after operation using robotic assistance and conventional free-hand techniques. The purpose of this study was to evaluate if using robotic assistance in THA can better restore native CA than a free-hand technique. Twenty three unilateral THA patients participated in this study. Twelve of them underwent a robotic-arm assisted THA (RIO® Robotic Arm Interactive Orthopedic System, Stryker Mako., Fort Lauderdale, FL, USA) and eleven received a free-hand THA. Subject specific 3D models of both implanted and non-implanted hips were reconstructed using post-operative CT scans. The anteversion and inclination of the native acetabulum and implanted cup were measured and compared. To determine the differences of the femoral anteversion between sides, the non-implanted native femur was mirrored and aligned with the remaining femur of the implanted side using an iterative closest point algorithm. The angle between the native femoral neck axis and the prosthesis neck axis in transverse plane was measured as the change in femoral anteversion following THA. The sum of the changes of the acetabular and femoral anteversion was defined as the change of CA after THA. A Wilcoxon signed rank test was performed to test if the anteversion of the navigation and free-hand THAs were different from the contralateral native hips (α = 0.05). The
Background:. Numerous studies have reported the importance of acetabular component positioning in decreasing dislocation rates, the risk of liner fractures, and bearing surface wear in total hip arthroplasty (THA). The goal of improving acetabular component positioning has led to the development of computer-assisted surgical (CAS) techniques, and several studies have demonstrated improved results when compared to conventional, freehand methods. Recently, a computed tomography (CT)-based robotic surgery system has been developed (MAKO™ Robotic Arm Interactive Orthopaedic System, MAKO Surgical Corp., Fort Lauderdale, FLA, USA), with promising improvements in component alignment and surgical precision. The purpose of this study was to compare the accuracy in predicting the postoperative acetabular component position between the MAKO™ robotic navigation system and an imageless, CAS system (AchieveCAS, Smith and Nephew Inc., Memphis, TN, USA). Materials and Methods:. 30 THAs performed using the robotic navigation system (robotic cohort) were available for review, and compared to the most recent 30 THAs performed using the imageless, CAS system (CAS cohort). The final, intraoperative reading for acetabular abduction and anteversion provided by each navigation system was recorded following each THA. Einsel-Bild-Roentgen analysis was used to measure the acetabular component abduction and anteversion based on anteroposterior pelvis radiographs obtained at each patient's first, postoperative visit (Figure 1). Two observers, blinded to the treatment arms, independently measured all the acetabular components, and the results were assessed for inter-observer reliability. Comparing the difference between the final, intraoperative reading for both acetabular abduction and anteversion, and the radiographic alignment calculated using EBRA analysis, allowed assessment of the intraoperative predictive capability of each system, and accuracy in determining the postoperative acetabular component position. In addition, the number of acetabular components outside of the “safe zone” (40° + 10° of abduction, 15° + 10° of anteversion), as described by Lewinnek et al., was assessed. Lastly, the operative time for each surgery was recorded. Results:. In the robotic cohort, the mean, absolute difference between the intraoperative reading and the postoperative alignment was 4.3° + 2.3° for acetabular abduction, and 3.2° + 2.3° for
INTRODUCTION. Traditionally, acetabular component insertion in direct anterior approach (DAA) total hip arthroplasty (THA) has been performed using fluoroscopic guidance. Handheld navigation systems can be used to address issues of alignment, cup placement and accuracy of measurements. Previous navigation systems have been used successfully in total knee arthroplasty (TKA) and has now been introduced in THA. We investigated the use of a new accelerometer-based, handheld navigation system during DAA THA to compare it to traditional means. This study aims to determine accuracy of acetabular cup placement as well as fluoroscopy times between two groups of patients. METHODS. Data was prospectively collected for a group of consecutive DAA THA procedures using a handheld navigation system (n=45) by a single surgeon. This was compared to data retrospectively collected for a group that underwent the same procedure without use of the navigation system(n=50). The time for use of the navigation system, including insertion of pins/registration, guiding cup position, and removal of pins, was recorded intraoperatively. Postoperative anteroposterior and cross-table lateral radiographs were used to measure acetabular inclination and anteversion angles. Targeted angles for all cases were 40° ±5 for inclination and 20° ±5 for anteversion. Intraoperative fluoroscopy exposure times were obtained from post-anesthesia care unit radiographs. RESULTS. Mean time of pin insertion/registration, cup positioning and removal was 180.5 seconds, 127.7 seconds and 26 seconds, giving a mean total time of 5.6 minutes. There were no significant differences in mean postoperative acetabular inclination angles between the navigation group as compared to the non-navigation group (39.8° vs 40.6°) (p = .2). There were no significant differences in mean postoperative
Introduction. Optimal implant position is critical to hip stability after total hip arthroplasty (THA). Recent literature points out the importance of the evaluation of pelvic position to optimize cup implantation. The concept of Functional Combined Anteversion (FCA), the sum of
Introduction. Prosthetic replacement remains the treatment of choice for displaced femoral neck fractures in the elderly population, with recent literature demonstrating significant functional benefits of total hip arthroplasty (THA) over hemiarthroplasty. Yet the fracture population also has historically high rates of early postoperative instability when treated with THA. The direct anterior approach (DAA) may offer the potential to decrease the risk of postoperative instability in this high-risk population by maintaining posterior anatomic structures. The addition of intraoperative fluoroscopy can improve precision in component placement and overcome limitations on preoperative planning due to poor preoperative radiographs performed in the emergency setting. Methods. We retrospectively reviewed clinical and radiographic outcomes of 113 consecutive patients with displaced femoral neck fractures treated by two surgeons over a five-year period. All underwent surgery via the DAA using fluoroscopic guidance, and were allowed immediate postoperative weight bearing without any hip precautions or restrictions. Charts were reviewed for relevant complications, while radiographs were reviewed for component positioning, sizing, and leg length discrepancy. Mean follow-up was 8.9 months. Results. Mean age was 79.3 years (range, 42 to 101), 73% of patients were women, and mean BMI was 22.6 kg/m. 2. Ninety patients (80%) received THA while 23 (20%) received unipolar or bipolar hemiarthroplasty. Mean
Background. Component positioning in total hip arthroplasty (THA) is critical to achieve optimal patient outcomes. Recent literature has shown acetabular component positioning may be inaccurate using traditional techniques. Robotic-assisted THA is a recent platform introduced to decrease the risk of malpositioned components. However, to date, a paucity of data is available comparing the intra-operative component position generated by the navigation system to post-operative radiographs. Purpose. The purpose of this study was to compare the component position measurements of a navigation system, used during robotic-assisted THA, to component position measurements obtained on post-operative radiographs. Methods. Intra-operative component position measurements for acetabular inclination,
Management of recurrent instability of the hip requires careful assessment to determine any identifiable causative factors. While plain radiographs can give a general impression, CT is the best methodology for objective measurement. Variables that can be measured include: prosthetic femoral anteversion, comparison to contralateral native femoral anteversion, total offset from the medial wall of the pelvis to the lateral side of the greater trochanter, comparison to total offset on the contralateral side, acetabular inclination, &
Introduction. Optimal implant position is the important factor in the hip stability after THA. Both the acetabular and femoral implants are placed in anteversion. While most hip dislocations occur either in standing position or when the hip is flexed, preoperative hip anatomy and postoperative implants position are commonly measured in supine position with CT scan. The isolated and combined anteversions of femoral and acetabular components have been reported in the literature. The conclusions are questionable as the reference planes are not consistent: femoral anteversion is measured according to the distal femoral condyles plane (DFCP) and acetabulum orientation in the anterior pelvic plane (APP)). The EOS imaging system allows combined measurements for standing position in the “anatomical” reference plane or anterior pelvic plane (APP) or in the patient “functional” plane (PFP) defined as the horizontal plane passing through both femoral heads. The femoral anteversion can also be measured conventionally according to the DFCP. The objective of the study was to determine the preoperative and postoperative acetabular, femoral and combined hip anteversions, sacral slope, pelvic incidence and pelvic tilt in patients who undergo primary THA. Material and Methods. The preoperative and postoperative 3D EOS images were assessed in 62 patients (66 hips). None of these patients had spine or lower extremity surgery other than THA surgery in between the 2 EOS assessments. None had dislocation within the follow up time period. Results. Pelvic values. The preoperative sacral slope was 42.4°(11° to 76°) as compared to the postoperative sacral slope (40.3°, −4° to 64°)(p=0.014). The preoperative pelvic tilt was 15.3° (−10° to 44°) as compared to the postoperative tilt (17.2°, −6° to 47°)(p=0.008). The preoperative pelvic incidence was 57.7°(34° to 93°) and globally unchanged as compared to the postoperative incidence (57.5°, 33° to 79°)(p=0.8). Acetabular values. Surgeons increased the anteversion according to the APP by an average of 12.6°(−13° to 53°)(p<0.001).