Advertisement for orthosearch.org.uk
Results 1 - 20 of 39
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 26 - 26
1 Feb 2021
Tanpure S Madje S Phadnis A
Full Access

The iASSIST system is a portable, accelerometer base with electronic navigation used for total knee arthroplasty (TKA) which guides the surgeon to align and validate bone resection during the surgical procedure. The purpose of this study was to compare the radiological outcome between accelerometer base iASSIST system and the conventional system. Method. A prospective study between two group of 36 patients (50 TKA) of primary osteoarthritis of the knee who underwent TKA using iASSIST ™ or conventional method (25 TKA in each group) from January 2018 to December 2019. A single surgeon performs all operations with the same instrumentation and same surgical approach. Pre-operative and postoperative management protocol are same for both groups. All patients had standardized scanogram (full leg radiogram) performed post operatively to determine mechanical axis of lower limb, femoral and tibial component alignment. Result. There was no significant difference between the 2 groups for Age, Gender, Body mass index, Laterality and Preoperative mechanical axis(p>0.05). There was no difference in proportion of outliers for mechanical axis (p=0.91), Coronal femoral component alignment angle (p=0.08), Coronal tibial component alignment angle (p=1.0). The mean duration of surgery, postoperative drop in Hb, number of blood transfusion didn't show significant difference between 2 groups (p>0.05). Conclusion. Our study concludes that despite being a useful guidance tool during TKA, iASSIST does not show any difference in limb alignment (mechanical axis), Tibial and femoral component alignment when compared with the conventional method


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 85 - 85
1 Feb 2020
Dessinger G LaCour M Komistek R
Full Access

Introduction. Diagnosis of osteoarthritis relies primarily on image-based analyses. X-ray, CT, and MRI can be used to evaluate various features associated with OA including joint space narrowing, deformity, articular cartilage integrity, and other joint parameters. While effective, these exams are costly, may expose the patient to ionizing radiation, and are often conducted under passive, non-weightbearing conditions. A supplemental form of analysis utilizing vibroarthrographic (VAG) signals provides an alternative that is safer and more cost-effective for the patient. The objective of this study is to correlate the kinematic patterns of normal, diseased (pre-operative), and implanted (post-operative) hip subjects to their VAG signals that were collected and to more specifically, determine if a correlation exists between femoral head center displacement and vibration signal features. Methods. Of the 28 hips that were evaluated, 10 were normal, 10 were diseased, and 8 were implanted. To collect the VAG signal from each subject, two uniaxial accelerometers were placed on bony landmarks near the joint; one was placed on the greater trochanter of the femur and the other along the anterior edge of the iliac crest. The subjects performed a single cycle gait (stance and swing phase) activity under fluoroscopic surveillance. The CAD models of the implanted components were supplied by the sponsoring company while the subject bone models were created from CT scans. 3D-to-2D registration was conducted on subject fluoroscopic images to obtain kinematics, contact area, and femoral center head displacement. The VAG signals were trimmed to time, passed with a denoise filter and wavelet decomposition. Results. When comparing the femoral head displacement to the vibration signals with respect to the normal hips, insignificant magnitudes of vibration were present (0.05 volts). For the diseased hips, greater magnitudes were seen (0.2 volts). For the implanted subjects, the overall vibration features were small (0.05 volts) much like the signals from the normal hips except for spikes that correlated to features within the gait cycle. Therefore, grinding sounds were heard from the degenerative hips, but not present for the normal or implanted hips in this study. Discussion. In regards to the normal hip subjects, the lesser magnitude of volts correlated well with the kinematic results showing no separation of the femoral head center (1 mm). For the diseased hips, the instances of greater feature quantity occurred at moments where the subjects experienced higher values of head center displacement (1 mm). These subjects also had an overall increase in average voltage magnitude likely due to the loss of cartilage about the articulating surface resulting in a rougher surface for the accelerometers to record. For the implanted subjects, due to no head center displacement and a smoother surface for joint articulation, the vibration signals were smaller than the diseased case but showed better correlation with features within the gait cycle. No exact quantification has been determined between separation and accelerometer voltage output, further studies and testing will need to be carried out in order to reach such a conclusion. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 134 - 134
1 Apr 2019
Adekanmbi I Ehteshami Z Hunt C Dressler M
Full Access

Introduction. In cementless THA the incidence of intraoperative fracture has been reported to be as high 28% [1]. To mitigate these surgical complications, investigators have explored vibro-acoustic techniques for identifying fracture [2–5]. These methods, however, must be simple, efficient, and robust as well as integrate with workflow and sterility. Early work suggests an energy-based method using inexpensive sensors can detect fracture and appears robust to variability in striking conditions [4–5]. The orthopaedic community is also considering powered impaction as another way to minimize the risk of fracture [6– 8], yet the authors are unaware of attempts to provide sensor feedback perhaps due to challenges from the noise and vibrations generated during powered impaction. Therefore, this study tests the hypothesis that vibration frequency analysis from an accelerometer mounted on a powered impactor coupled to a seated femoral broach can be used to distinguish between intact and fractured bone states. Methods. Two femoral Sawbones (Sawbones AB Europe, SKU 1121) were prepared using standard surgical technique up to a size 4 broach (Summit, Depuy Synthes). One sawbone remained intact, while a calcar fracture approximately 40mm in length was introduced into the other sawbone. Broaching was performed with a commercially available pneumatic broaching system (Woodpecker) for approximately 4 secs per test (40 impactions/sec) with hand-held support. Tests were repeated 3 times for fractured and intact groups as well as a ‘control’ condition with the broach handle in mid-air (ie not inserted into the sawbone). Two accelerometers (PCB M353B18) positioned on the femoral condyle and the Woodpecker impactor captured vibration data from bone-broach-impactor system (Fig1). Frequency analysis from impaction strikes were postprocessed (Labview). A spectrogram and area under FFT (AUFFT) [4] were analysed for comparisons between fractured and intact bone groups using a nested ANOVA. Results. Vibration frequency patterns between respective groups were best observed using an accelerometer positioned on the impaction device rather than on a sawbone (fig1). Qualitative assessment revealed that spectrograms showed no obvious difference for characteristic vibration frequencies between intact and fractured bone groups. A frequency signal at approximately 10kHz was absent for control impactions but present with bone impactions (Fig2). Quantitative assessment revealed AU-FFT was noticeably higher for intact bone groups than fractured bone groups for sampled impactions using a nested experimental design for statistics (p=0.11). Discussion. Our pilot study demonstrates that application of powered impaction combined with vibration frequency analysis has the potential to distinguish between an intact and fractured sawbone in a way that minimises instrumentation footprint and complexity of workflow in OR with a new generation of impaction device targeted at reducing and detecting bone fractures. Further investigation should validate these methods by evaluating the variation with sawbones and simulated bone fractures


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 107 - 107
1 May 2016
Kirking B El-Gohary M Kwon Y
Full Access

Measurements of shoulder kinematics during activities of daily living (ADL) can be used to evaluate patient function before and after treatment and help define device testing conditions. However, due to the difficulties of making 3D motion measurements outside of laboratory conditions, there are few reports of measured shoulder 3D kinematics during ADL. The purpose of this study was to demonstrate the feasibility of using wearable inertial measurement units (IMUs) to track shoulder joint angles. A nonrandom sample of 5 subjects with normal shoulders was selected based on occupation. The occupations were: dental hygienist, primary school teacher, mechanical project engineer, administrative assistant, and retail associate. Subjects wore two OPAL IMUs (APDM, Portland OR) as shown in Figure 1 on the sternum and on the upper arm for approximately 4 hours while at their workplace performing their normal work place activities and then up to 4 hours while off-work. Orientation angles from IMUs have traditionally been estimated by integrating gyroscope data and calculating inclination angles relative to gravity with accelerometers. A significant problem is that inaccuracies inherent in the measurements can degrade accuracy. In this study, we used an Unscented Kalman Filter (UKF) with IMU output to track shoulder angles. The UKF mitigates the effect of random drift by incorporating domain knowledge about the shoulder normal range of motion, and the gyroscope and accelerometer characteristics into the state-space models. Initially, in the horizontal plane, without gravity measurements from the accelerometer to aid the gyroscope data, there were unacceptable errors in transverse rotation. To mitigate this error, additional constraints were applied to model gyroscope drift and a zero velocity update strategy was included. These additions decreased tracker errors in heading by 63%. The resulting accuracy with the modified tracker in all motion planes was about 2° (Figure 2). Subjects commented that the IMUs were well tolerated and did not interfere with their ability to perform tasks in a normal manner. The overall averaged 95th percentile angles (Figure 3) were: flexion 128.8°, adduction 128.4°, and external rotation 69.5°. These peaks angles are similar to other investigator's reports using laboratory simulations of ADL tasks measured with optical and electromagnetic technologies, though this study's observations did show 17% greater extension and 40% greater adduction. Additionally, in these observations, occurrences of maximal internal rotation were rare compared to maximal external rotation and when maximum external rotation did occur, it was in combination with an average flexion angle of 103°. Finally, by performing a Fourier transform of the arm angles and using the 50th percentile frequency the number of arm cycles in a 10 year period was calculated at over 600,000 cycles. Application of the UKF with the additional drift correction made substantial improvements in shoulder tracking performance and this feasibility data suggests that IMUs with the UKF are suitable for extended use outside of laboratory settings. The motion data collected provides a novel description of arm motion during ADLs including estimating the cycle count of the upper arm at more than 600,000 cycles over 10 years


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 18 - 18
1 Jun 2021
Cushner F Schiller P Gross J Mueller J Hunter W
Full Access

PROBLEM. Since the COVID-19 pandemic of 2020, there has been a marked rise in the use of telemedicine to evaluate patients following total knee arthroplasty (TKA). Telemedicine is helpful to maintain patient contact, but it cannot provide objective functional TKA data. External monitoring devices can be used, but in the past have had mixed results due to patient compliance and data continuity, particularly for monitoring over numerous years. This novel stem is a translational product with an embedded sensor that can remotely monitor patient activity following TKA. SOLUTION. The Canturio™ TE∗ System (Canary Medical) functions structurally as a tibial extension for the Persona® cemented tibial plate (Zimmer Biomet). The stem is instrumented with internal motion sensors (3-D accelerometer and gyroscope) and telemetry that collects and transmits kinematic data. Raw data is converted by analytics into clinically relevant gait metrics using a proprietary algorithm. The Canturio™ TE∗ will monitor the patient's gait daily for the first year and then with lower frequency thereafter to conserve battery power enabling the potential for 20 years of longitudinal data collection and analysis. A base station in the OR activates the device and links the stem and data to the patient. A base station in the patient's home collects and uploads data to the Cloud Based Canary Data Management Platform (Canary Medical). The Canary Cloud is structured as an FDA regulated and HIPPA-compliant database with cybersecurity protocols integrated into the architecture. A third base station is an accessory used in the health care professional's office to perform an on-demand gait analysis of a patient. A dashboard allows the health care professional and patient to monitor objective data of the patient's activity and progress post treatment. MARKET. The early target market for this device includes total joint surgeons who are early adopters of technology and currently utilize technology in their practice. The kinematic data provided by the Canturio™ TE∗ System will enable clinicians to augment patient care by reviewing their objective gait metrics. In the future, this data has the potential to be integrated with other Zimmer Biomet technologies, such as the Rosa™ Knee robotic platform, mymobility™, and sensored devices like iAssist™, to provide the surgeon with a complete pre-surgical functional assessment, intraoperative data, and post-operative functional data. PRODUCT. Persona IQ will be the combination of the proven Persona personalized total knee system with the Canary Medical Canturio™ TE∗. TIMING AND FUNDING. The Canturio™ TE is currently under De Novo FDA review for market clearance; it is not yet available for commercial distribution. The plan is to launch the product in 2021 pending regulatory De Novo grant. This effort is a partnership between Zimmer Biomet and Canary Medical. ∗ The Canturio™ - TE is currently under De Novo FDA review for market clearance; it is not yet available for commercial distribution


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 212 - 212
1 Sep 2012
Walker P Kahn H Zuckerman J Slover J Jaffe F Karia R Kim J
Full Access

INTRODUCTION. Total Knee Arthroplasty (TKA) is a durable procedure which allows most patients to achieve a satisfactory functional level, but there can be instability under stressful conditions. Instability is one cause of early revision, often due to misalignment or inadequate ligament balancing. Persistent instability may cause elevated polyethylene wear. Lower levels of instability may cause patient discomfort with certain stressful activities. Hence quantifying instability may have an important role in the functional evaluation of TKA. Several previous studies showed that accelerometers have advantages in kinematic studies including low cost, ease of application, and application to any activity. The aim of this study was to demonstrate the use of an accelerometer attached to the anterior of the tibia, as an evaluation of knee stability of TKA patients. It was postulated that accelerations between TKAs and normal controls will be different, which could indicate abnormal TKA kinematics involving instability, especially for high intensity activities. METHODS & MATERIALS. We tested 38 TKA knees in 27 patients, in the age range of 50–80 years, with a minimum follow up of 6 months; and 25 knees in 16 shoulder patients, who had no known knee pathology as age-matched controls. A tri-axial accelerometer was firmly attached to the anterior proximal tibia to measure 3-axis accelerations with a sample rate of 100 Hz. Four activities were tested;. Starting with the test leg, walk 3 steps then come to a sudden stop. Take one step forward with the non-tested leg and make a tight 90. ∗∗∗∗∗. turn towards the non- tested knee direction. Sit down for 3–4 seconds then stand back up. Step up on a 7″ inches high box with the test leg, followed by the non-test leg. Then step down from the box with the test leg, followed by the non-test leg. During the activities, the patients responded to a questionnaire on instability and pain for each activity. For each test at the time of foot impact, there was a high/low peak acceleration, the peak-to-valley being taken as the indicator. The mean total magnitude of the acceleration was compared between the TKA and control groups in the anterior-posterior direction using the Student's t-test. Statistical significance was at p-value < 0.05. RESULTS. Significant differences were seen between TKR and normal controls for stepping down, and for turning. Significance was close for a sudden stop. From the instability questionnaire, 15 knees had pain and 13 knees felt unstable, most of the pain and instability (13 and 11 respectively) while performing stepping up and down activity. This was followed by the sudden stop activity which had 8 painful and 6 unstable knees. DISCUSSION. The significant differences between TKR and normal control knees indicated that TKR did not restore normal kinetics, which could be due to TKR design, persistent muscle weakness or other factors. ACKNOWLEDGEMENTS. Funded by New York University Medical School – NYU-Polytechnic Seed Grant Program


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 59 - 59
1 Mar 2017
Noble P Foley E Simpson J Gold J Choi J Ismaily S Mathis K Incavo S
Full Access

Introduction. Numerous factors have been hypothesized as contributing to mechanically-assisted corrosion at the head-neck junction of total hip prostheses. While variables attributable to the implant and the patient are amenable to investigation, parameters describing assembly of the component parts can be difficult to determine. Nonetheless, increasing evidence suggests that the manner of intraoperative assembly of modular components plays a critical role in the fretting and corrosion of modular implants. This study was undertaken to measure the magnitude and direction of the impaction forces applied by surgeons in assembling modular head-neck junctions under operative conditions where both the access and visibility of the prosthesis may potentially compromise component fixation. Methods. A surrogate consisting of the lower limb with overlying soft tissue was developed to simulate THR performed via a 10cm incision using the posterior approach. The surrogate was modified to match the resistance of the body to retraction of the incision, mobilization of the femur and hammering of the implanted femoral component. An instrumented femoral stem (SL PLUS) was surgically implanted into the bone after attachment of 3 miniature accelerometers (Dytran Inc) in an orthogonal array to the proximal surface of the prosthesis. A 32mm cobalt chrome femoral head was mounted on the trunnion (12/14 taper, machined) of the femoral stem. 15 Board-certified and trainee surgeons replicated their surgical technique in exposing the femur and impacting the modular head on the tapered trunnion. Impaction was performed using an instrumented hammer (5000 Lbf Dytran impact hammer) that provided measurements of the magnitude and temporal variation of the impact force. The components of force acting along the axis aof the neck and in the AP and ML directions were continuously samples using the accelerometers. Results. For all surgeons, the average value of the peak impaction force was 3765±1094N (range: 2358 to 6225N). Head impact was delivered in an average direction of 24.4±7.5 degrees more vertical than the trunnion axis, though this value varies from 14 to 43 degrees between individual surgeons. On average, the off-axis force perpendicular to the trunnion axis was 1586±736N, however, this value ranged from 634 to 2895N with peak loading of both the head and the implant in varus. Almost all of the applied impact was directed within 10 degrees of the mid-plane of the stem (average deviation: 2.5±5.9 degrees of with only a small force directed anteriorly or posteriorly (average force: 140±396N, anterior). The variability in the magnitude and direction of the impaction force was not associated with the level of training or the surgical experience of the participants (p>0.05). Conclusions. This study shows that large off-axis forces are developed during manual impaction of modular heads onto stem trunnions via the posterior approach. The variation in magnitude and direction of these forces varies between individual surgeons and is not systematically related to the training or experience of each surgeon in joint replacement. This variability in intraoperative assembly of head-neck junctions may contribute to the severity and incidence of mechanically assisted corrosion in total hip replacement


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 26 - 26
1 Feb 2020
Bloomfield R McIsaac K Teeter M
Full Access

Objective. Emergence of low-cost wearable systems has permitted extended data collection for unsupervised subject monitoring. Recognizing individual activities performed during these sessions gives context to recorded data and is an important first step towards automated motion analysis. Convolutional neural networks (CNNs) have been used with great success to detect patterns of pixels in images for object detection and recognition in many different applications. This work proposes a novel image encoding scheme to create images from time-series activity data and uses CNNs to accurately classify 13 daily activities performed by instrumented subjects. Methods. Twenty healthy subjects were instrumented with a previously developed wearable sensor system consisting of four inertial sensors mounted above and below each knee. Each subject performed eight static and five dynamic activities: standing, sitting in a chair/cross-legged, kneeling on left/right/both knees, squatting, laying, walking/running, biking and ascending/descending stairs. Data from each sensor were synchronized, windowed, and encoded as images using a novel encoding scheme. Two CNNs were designed and trained to classify the encoded images of both static and dynamic activities separately. Network performance was evaluated using twenty iterations of a leave-one-out validation process where a single subject was left out for test data to estimate performance on future unseen subjects. Results. Using 19 subjects for training and a single subject left out for testing per iteration, the average accuracy observed when classifying the eight static activities was 98.0% ±2.9%. Accuracy dropped to 89.3% ±10.6% when classifying all dynamic activities using a separate model with the same evaluation process. Ascending/descending stairs, walking/running, and sitting on a chair/squatting were most commonly misclassified. Conclusions. Previous related work on activity recognition using accelerometer and/or gyroscope raw signals fails to provide sufficient data to distinguish static activities. The proposed method operating on lower limb orientations has classified eight static activities with exceptional accuracy when tested on unseen subject data. High accuracy was also observed when classifying dynamic activities despite the similarity of the activities performed and the expected variance of individuals’ gait. Accuracy reported in existing literature classifying comparable activities from other wearable sensor systems ranges between 27.84% to 84.52% when tested using a similar leave-one-subject-out validation strategy[1]. It is expected that incorporating these trained models into the previously developed wearable system will permit activity classification on unscripted instrumented activity data for more contextual motion analysis


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 96 - 96
1 May 2019
Su E
Full Access

Acetabular implant position is important for the stability, function, and long-term wear properties of a total hip arthroplasty (THA). Prior studies of acetabular implant positioning have demonstrated a high percentage of outliers, even in experienced hip surgeons, when conventional instruments are used. Computer navigation is an attractive tool for use in (THA, as it has been shown to improve the precision of acetabular component placement and reduce the incidence of outliers. However, computer navigation with imageless, large-console systems is costly and often interrupts the surgeon's workflow, and thus, has not been widely adopted. Another method to improve acetabular component positioning during THA is the use of fluoroscopy with the direct anterior approach. Studies have demonstrated that the supine position of the patient during surgery facilitates the use of fluoroscopic guidance, thus improving acetabular component position. A handheld, accelerometer based navigation unit for use in total hip replacement has recently become available to assist the surgeon in positioning the acetabular component during anterior approach THA, potentially reducing the need for intraoperative fluoroscopic studies. We sought to compare the radiographic results of direct anterior THA performed with conventional instrumentation vs. handheld navigation to determine the accuracy of the navigation unit, and to see whether or not there was a reduction in the fluoroscopic time used during surgery. Furthermore, we timed the use of the navigation unit to see whether or not it required a substantial addition to surgical time. Our results demonstrate that a handheld navigation unit used during anterior approach THA had no difference with regard to acetabular cup positioning when compared to fluoroscopically assisted THA, but led to a reduction in the use of intraoperative fluoroscopy time


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_9 | Pages 26 - 26
1 Feb 2013
Brunton L Bolink S van Laarhoven S Lipperts M Grimm B Heyligers I Blom A
Full Access

Accelerometer based gait analysis (AGA) is a potential alternative to the more commonly used skin marker based optical motion analysis system(OMAS). The use of gyroscopes in conjunction with accelerometers (i.e. inertial sensors), enables the assessment of position and angular movements of body segments and provides ambulatory kinematic characterisation of gait. We investigated commonly used gait parameters and also a novel parameter, Pelvic obliquity (PO) and whether they can be used as a parameter of physical function and correlate with classic clinical outcome scores. Gait was studied in healthy subjects (n=20), in patients with end stage hip OA (n=20) and in patients with end stage knee OA (n=20). Subjects walked 20 metres in an indoor environment along a straight flat corridor at their own preferred speed. A 3D inertial sensor was positioned centrally between the posterior superior iliac spines (PSIS) overlying S1. Comparing gait parameters of end stage hip OA patients with an age and gender matched healthy control group, significantly lower walking speed, longer step duration and shorter step length was observed. After correcting for walking speed between groups, significantly less average range of motion of PO (RoM. po. ) was observed for patients with end stage hip OA compared to healthy subjects and patients with end stage knee OA. IGA allows objective assessment of physical function for everyday clinical practice and allows assessment of functional parameters beyond time only. IGA measures another dimension of physical function and could be used supplementary to monitor recovery of OA patients after TJR


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 40 - 40
1 May 2019
Gustke K
Full Access

Fifteen-year survivorships studies demonstrate that total knee replacements have excellent survivorship, with reports of 85 to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Total knee imbalance with either too tight or loose soft tissues account for up to 54% of revisions in one series. This may account for many of the 20% unsatisfactory total knee arthroplasty outcomes. Soft tissue balancing technique is more like an art. The surgeon relies on subjective feel for appropriate ligamentous tension. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intraoperative feedback regarding knee quantitative compartment pressures and component tracking. After all bone cuts are made using the surgeon's preferred techniques, trial components with the sensor tibial trial are inserted and the knee is taken through a passive range of motion. After visualizing the resultant compartment pressures and tracking data on a graphical interface, imbalance situations such as a too tight MCL or ITB, an incompetent or too tight PCL, or malrotated femoral or tibial component can be identified. A decision can be made as to whether to recut the bone to realign components, do a soft tissue release, or a combination of both. Soft tissue releases can be titrated while observing equalizing compartment pressures. Sensor feedback improves soft tissue balancing. More balanced compartments occur using a sensor trial than with standard soft tissue balancing technique blinded to sensor information. A multicenter three year study has shown that having the medial and lateral compartments in flexion and extension balanced within 15 pounds provides better outcomes. Patients with quantitatively balanced TKA with <15lbf mediolateral load differential have better forgotten knee scores at six weeks and six months. Use of smart trials is a new approach to total knee replacement surgery allowing fine tune balancing and takes soft tissue balancing from art to science


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 8 - 8
1 Apr 2019
Adekanmbi I Ehteshami Z Hunt C Dressler M
Full Access

Introduction. In Total Hip Arthroplasty (THA), proper bone preparation technique is fundamental to preventing intraoperative fracture. Anecdotally, surgeons suggest they can avoid fracture by listening for changes in the pitch of a mallet strike during broaching. Consequently, it is not surprising that researchers have explored vibroacoustic methods to prevent [1] and identify bone fractures [2, 3]. For instance, a shift in frequency of the acoustic signals during impaction has been correlated with initial stability [4, 5]. In-spite of these research-based successes, we are unaware of an intraoperative application for THA. We submit that idiosyncratic variability during impaction [6] may overwhelm analytical techniques developed in a controlled laboratory environment. The purpose of this test, therefore, was to evaluate the effect of several strike parameters on the vibro-acoustic response during impaction. Specifically, we hypothesized that the angle, location, and force of impaction would produce ‘false-positives’ in frequency regions that have been used to identify fracture [7]. Methods. A Sawbones femur (SKU1121, Medium) was prepared and broached using standard surgical technique for the Summit hip system (DePuy Synthes) progressing from size 0 to 4. The size 4 broach was firmly seated and impacted ten times (n=10) for each of the prescribed conditions (Table 1) while securely holding the femur by hand. Vibroacoustic data from an accelerometer attached distally on the femur and a directional microphone located within 1 metre (Figure 1) were acquired at a sampling rate of 40kHz and postprocessed using LabView. Spectrograms were generated for qualitative comparisons, while fast fourier transform (FFT) with normalised amplitudes for each strike facilitated quantitative analysis of the area under the FFT curve (AU-FFT). Strike conditions were monitored to ensure the groups were consistent and distinct (Table 1). Results. There were statistically significant differences in strike conditions for angle (30°vs 60°), location (centre vs medial and lateral) and force (medium vs low and high) (Figure 2). Data describing the strike conditions revealed consistent and distinct groups (data not shown). Discussion and Conclusion. We have demonstrated that variability in striking does influence the vibroacoustic signal during impaction; however, contrary to our hypothesis, this variability does not overwhelm the ability to distinguish between fractured and intact impaction signals. Consequently, the AU-FFT comparator could be a robust and useful metric. Future work could evaluate this technique under more diverse conditions with multiple samples of varying anatomies, densities, and degrees of fracture. The above methods and paradigms could further be investigated to discern when a broach is properly seated and thereby avoid the risk of fracture altogether


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 39 - 39
1 Sep 2012
Leszko F Zingde S Argenson J Dennis D Wasielewski R Mahfouz M Komistek R De Bock T
Full Access

Anterior knee pain is one of the most frequently reported musculoskeletal complaints in all age groups. However, patient's complaints are often nonspecific, leading to difficulty in properly diagnosing the condition. One of the causes of pain is the degeneration of the articular cartilage. As the cartilage deteriorates, its ability to distribute the joint reaction forces decreases and the stresses may exceed the pain threshold. Unfortunately, the assessment of the cartilage condition is often limited to a detailed interview with the patient, careful physical examination and x-ray imaging. The X-ray screening may reveal bone degeneration, but does not carry sufficient information of the soft tissues' conditions. More advanced imaging tools such as MRI or CT are available, but these are expensive, time consuming and are only suitable for detection of advanced arthritis. Arthroscopic surgery is often the only reliable option, however due to its semi-invasive nature, it cannot be considered as a practical diagnostic tool. However, as the articular cartilage degenerates, the surfaces become rougher, they produce higher vibrations than smooth surfaces due to higher friction during the interaction. Therefore, it was proposed to detect vibrations non-invasively using accelerometers, and evaluate the signals for their potential diagnostic applications. Vibration data was collected for 75 subjects; 23 healthy and 52 subjects suffering from knee arthritis. The study was approved by the IRB and an Informed Consent was obtained prior to data collection. Five accelerometers were attached to skin around the knee joint (at the patella, medial and lateral femoral condyles, tibial tuberosity and medial tibial plateau). Each subject performed 5 activities; (1) flexion-extension, (2) deep knee bend, (3) chair rising, (4) stair climbing and (5) stair descent. The vibration and motion components of the signals were separated by a high pass filter. Next, 33 parameters of the signals were calculated and evaluated for their discrimination effectiveness (Figure 1). Finally the pattern recognition method based on Baysian classification theorem was used for classify each signal to either healthy or arthritic group, assuming equal prior probabilities. The variance and mean of the vibration signals were significantly higher in the arthritic group (p=2.8e-7 and p=3.7e-14, respectively), which confirms the general hypothesis that the vibration magnitudes increase as the cartilage degenerates. Other signal features providing good discrimination included the 99. th. quantile, the integral of the vibration signal envelope, and the product of the signal envelope and the activity duration. The pattern classification yielded excellent results with the success rate of up to 92.2% using only 2 features, up to 94.8% using 3 (Figure 2), and 96.1% using 4 features. The current study proved that the vibrations can be studied non-invasively using a low-cost technology. The results confirmed the hypothesis that the degeneration of the cartilage increases the vibration of the articulating bones. The classification rate obtained in the study is very encouraging, providing over 96% accuracy. The presented technology has certainly a potential of being used as an additional screening methodology enhancing the assessment of the articular cartilage condition


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 123 - 123
1 Jun 2018
Gustke K
Full Access

Fifteen-year survivorship studies demonstrate that total knee replacements have excellent survivorship, with reports of 85 to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Noble et al. reported that 14% of their patients were dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. There is also a difference in the patient's subjective assessment of outcome and the surgeon's objective assessment. Dickstein et al. reported that a third of total knee patients were dissatisfied, even though the surgeons felt that their results were excellent. Most of the patients who report lower outcome scores do so because their expectations are not being fulfilled by the total knee replacement surgery. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance that we have difficulty in assessing intra-operatively and post-operatively. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intra-operative feedback regarding knee quantitative compartment pressures and component tracking. After all bone cuts are made using the surgeon's preferred techniques, trial components with the sensor tibial trial are inserted and the knee is taken through a passive range of motion. After visualizing the resultant compartment pressures and tracking data on a graphical interface, the surgeon can decide if compartment loading differences are greater than 15 pounds whether to perform a soft tissue balance or minor bone recuts. If soft tissue balancing is chosen, pressure data can indicate where to perform the release and allow the surgeon to assess the pressure changes as titrated soft tissue releases are performed. A multi-center study using smart trials has demonstrated dramatically better outcomes out to three years


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 111 - 111
1 Aug 2017
Su E
Full Access

Acetabular implant position is important for the stability, function, and long-term wear properties of a total hip arthroplasty (THA). Prior studies of acetabular implant positioning have demonstrated a high percentage of outliers, even for experienced hip surgeons, when conventional instruments are used. Computer navigation is an attractive tool for use in THA, as it has been shown to improve the precision of acetabular component placement and reduce the incidence of outliers. However, computer navigation with imageless, large-console systems is costly and often interrupts the surgeon's workflow, and thus has not been widely adopted. Another method to improve acetabular component positioning during THA is the use of fluoroscopy with the direct anterior approach. Studies have demonstrated that the supine position of the patient during surgery facilitates the use of fluoroscopic guidance, thus improving acetabular component position. A handheld, accelerometer based navigation unit for use in total hip replacement has recently become available to assist the surgeon in positioning the acetabular component during anterior approach THA, potentially reducing the need for intra-operative fluoroscopic studies. We sought to compare the radiographic results of direct anterior THA performed with conventional instrumentation vs. handheld navigation to determine the accuracy of the navigation unit, and to see whether or not there was a reduction in the fluoroscopic time used during surgery. Furthermore, we timed the use of the navigation unit to see whether or not it required a substantial addition to surgical time. Our results demonstrate that a handheld navigation unit used during anterior approach THA had no difference with regard to acetabular cup positioning when compared to fluoroscopically assisted THA, but led to a reduction in the use of intra-operative fluoroscopy time


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 37 - 37
1 Aug 2017
Gustke K
Full Access

Fifteen-year survivorship studies demonstrate that total knee replacements have excellent survivorship, with reports of 85% to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Noble et al. reported that 14% of their patients were dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. There is also a difference in the patient's subjective assessment of outcome and the surgeon's objective assessment. Dickstein et al. reported that a third of total knee patients were dissatisfied, even though the surgeons felt that their results were excellent. Most of the patients who report lower outcome scores due so because their expectations are not being fulfilled by the total knee replacement surgery. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance that we have difficulty in assessing intra-operatively and post-operatively. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intra-operative feedback regarding knee quantitative compartment pressures and component tracking. After all bone cuts are made using the surgeon's preferred techniques, trial components with the sensored tibial trial are inserted and the knee is taken through a passive range of motion. After visualizing the resultant compartment pressures and tracking data on a graphical interface, the surgeon can decide whether to perform a soft tissue balance or minor bone recuts. If soft tissue balancing is chosen, pressure data can indicate where to perform the release and allow the surgeon to assess the pressure changes as titrated soft tissue releases are performed. A multi-center study using smart trials has demonstrated dramatically better outcomes out to three years


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 51 - 51
1 Apr 2018
Leuridan S Goossens Q Roosen J Pastrav L Denis K Desmet W Vander Sloten J Mulier M
Full Access

Introduction. Aseptic acetabular component failure rates have been reported to be similar or even slightly higher than femoral component failure. Obtaining proper initial stability by press fitting the cementless acetabular cup into an undersized cavity is crucial to allow for secondary osseous integration. However, finding the insertion endpoint that corresponds to an optimal initial stability is challenging. This in vitro study presents an alternative method that allows tracking the insertion progress of acetabular implants in a non-destructive, real-time manner. Materials and Methods. A simplified acetabular bone model was used for a series of insertion experiments. The bone model consisted of polyurethane solid foam blocks (Sawbones #1522-04 and #1522-05) into which a hemispherical cavity and cylindrical wall, representing the acetabular rim, were machined using a computer numerically controlled (CNC) milling machine (Haas Automation Inc., Oxnard, CA, USA). Fig. 1 depicts the bone model and setup used. A total of 10 insertions were carried out, 5 on a low density block, 5 on a high density block. The acetabular cups were press fitted into the bone models by succeeding hammer hits. The acceleration of the implant-insertor combination was measured using 2 shock accelerometers mounted on the insertor during the insertion process (PCB 350C03, PCB Depew, NY, USA). The force applied to the implant-insertor combination was also measured. 15 hammer hits were applied per insertion experiment. Two features were extracted from the acceleration time signal; total signal energy (E) and signal length (LS). Two features and one correlation measure were extracted from the acceleration frequency spectra; the relative signal power in the low frequency band (PL, from 500–2500Hz) and the signal power in the high frequency band (P Hf, from 4000–4800 Hz). The changes in the low frequency spectra (P Lf, from 500–2500 Hz) between two steps were tracked by calculating the Frequency Response Assurance Criterion (FRAC). Force features similar to the ones proposed by Mathieu et al., 2013 were obtained from the force time data. The convergence behavior of the features was tracked as insertion progressed. Results. Differences were noted visually between the acceleration data recorded at the beginning of insertion and towards the end, both in the time domain (fig. 2A) as well as in the frequency domain (fig. 2B). These differences were also captured by the proposed features. Fig. 3 shows a typical representation of how the time (A), frequency (B) and force (C) features evolved during insertion. Based on a simple convergence criterion, the insertion endpoint could be determined. Conclusions. The convergence behavior, and the insertion endpoint thus identified, of the force-based and acceleration based features correlated well. The different features capture the changes in damping and stiffness of the implant-bone system that are occurring as the insertion progresses and combining them improves the robustness of the endpoint detection method. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 79 - 79
1 Aug 2017
Rodriguez J
Full Access

Increasing data is emerging, consistently demonstrating a more rapid recovery for patients undergoing direct anterior approach (DAA) surgery. In one study, objective findings of early recovery including timed up and go tests, Functional Independence Measures are significantly faster in the first 2 weeks, and normalise by 6 weeks. A more recent randomised study shows a quicker achievement of the functional milestones of discontinuing walking aids, discontinuing opioids, stair ascent, and walking 6 blocks, as well as accelerometer measures of activity in the first 2 weeks after surgery. In both of these studies, seasoned surgeons well beyond their learning curves performed the surgeries. A prospective MRI study of volume before and after surgery has shown full recovery or mild hypertrophy of most muscles at an average of 24 weeks from surgery, but a sustained loss of muscle volume for the obturator internus muscle in the DAA, and sustained loss of muscle volume for obturator internus, obturator externus, piriformis, and quadratus femoris in the posterior approach patients. The muscles that are released in the surgeries recover incompletely. Prospective assessment of muscle strength demonstrated loss of flexion strength in the DAA group and loss of external rotation strength in the posterior group at 6 weeks. By 3 months, the DAA group had returned to normal in their strength, while the posterior group had persistent external rotation weakness. Prospective assessment of gait, pre-operatively and at 6 months showed similar improvements in frontal and sagittal plane range of movement in gait, with a similar improvement in transverse plane movement (internal and external rotation) in the DAA group, but no change in the posterior cohort. The precision of socket placement, after undergoing a learning curve, was greater with the use of fluoroscopy in the DAA. Cutting and subsequently repairing a muscle can have a clinically insignificant, but nonetheless objectively measurable effect on the function of that muscle. Observed downsides of DAA include a higher prevalence of wound complications in obese patients, and possibly a higher risk of periprosthetic fractures in elderly, thin women. Recent larger registry data would also suggest that there is no difference in dislocation rate between the 2 referenced approaches, and possibly a higher femoral revision rate for the DAA. These may be honest and real depictions of a large learning curve as we further understand and disseminate the subtleties of proper execution of DAA surgery


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 80 - 80
1 Apr 2017
Gustke K
Full Access

Fifteen-year survivorship studies demonstrate that total knee replacement have excellent survivorship, with reports of 85 to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Noble et al. reported that 14% of their patients were dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. There is also a difference in the patient's subjective assessment of outcome and the surgeon's objective assessment. Dickstein et al. reported that a third of total knee patients were dissatisfied, even though the surgeons felt that their results were excellent. Most of the patients who report lower outcome scores due so because their expectations are not being fulfilled by the total knee replacement surgery. Perhaps this dissatisfaction is a result of subtle soft tissue imbalance that we have difficulty in assessing intraoperatively and postoperatively. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly. New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intra-operative feedback regarding knee quantitative compartment pressures and component tracking. After all bone cuts are made using the surgeon's preferred techniques, trial components with the sensored tibial trial are inserted and the knee is taken through a passive range of motion. After visualizing the resultant compartment pressures and tracking data on a graphical interface, the surgeon can decide whether to perform a soft tissue balance or a minor bone recuts. If soft tissue balancing is chosen, pressure data can indicate where to perform the release and allow the surgeon to assess the pressure changes as titrated soft tissue releases are performed. A multi-center study using smart trials has demonstrated dramatically better outcomes out to three years


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 43 - 43
1 Nov 2015
Su E
Full Access

Computer navigation is an attractive tool for use in total knee arthroplasty (TKA), as it is well known that alignment is important for the proper function of a total knee replacement. Malalignment of the prosthetic joint can lead to abnormal kinematics, unbalanced soft-tissues, and early loosening. Although there are no long term studies proving the clinical benefits of computer navigation in TKA, studies have shown that varus alignment of the tibial component is a risk factor for early loosening. A handheld, accelerometer based navigation unit for use in total knee replacement has recently become available to assist the surgeon in making the proximal tibial and distal femoral cuts. Studies have shown the accuracy to be comparable to large, console-based navigation units. Additionally, accuracy of cuts is superior to the use of traditional alignment guides, improving the percentage of cuts within 2 degrees of the desired alignment. Because the registration is based on the mechanical axis of the knee, anatomic variables such as femoral neck-shaft angle, femoral length, and presence of a tibial bow do not affect the results. The handheld aspect of this navigation unit allows its use without additional incisions or array attachment. Furthermore, the learning curve and usage time is minimal, supporting its use in primary TKA