Over the past 15 years Anterior Approach (AA) THA has shown a dramatic increase in adoption by surgeons (over 30%) and choice by patients with a corresponding decrease in the percentage of hips performed with traditional posterior and lateral approaches. I began AA in 1996 in order to solve the classic problems of potential dislocation associated with posterior approach and potential
Hip abductor deficiency (HAD) associated with hip arthroplasty can be a chronic, painful condition that can lead to abnormalities in gait and instability of the hip. HAD is often confused with trochanteric bursitis and patients are often delayed in diagnosis after protracted courses of therapy and steroid injection. A high index of suspicion is subsequently warranted. Risk factors for HAD include female gender, older age, and surgical approach. The Hardinge approach is most commonly associated with HAD because of failure of repair at the time of index surgery or subsequent late degenerative or traumatic rupture. Injury to the superior gluteal nerve at exposure can also result in HAD and is more commonly associated with anterolateral approaches. Multiple surgeries, chronic infection, and chronic inflammation from osteolysis or metal debris are also risk factors especially as they can result in bone stock deficiency and direct injury to muscle. Increased offset and/or leg length can also contribute to HAD, especially when both are present. Physical exam demonstrates
Complete or nearly complete disruption of the attachment of the gluteus is seen in 10–20% of cases at the time of THA. Special attention is needed to identify the lesion at the time of surgery because the avulsion often is visible only after a thickened hypertrophic trochanteric bursa is removed. From 1/1/09 to 12/31/13, 525 primary hip replacements were performed by a single surgeon. After all total hip components were implanted, the greater trochanteric bursa was removed, and the gluteus medius and minimus attachments to the greater trochanter were visualised and palpated. Ninety-five hips (95 patients) were found to have damage to the muscle attachments to bone. Fifty-four hips had mild damage consisting of splits in the tendon, but no frank avulsion of abductor tendon from their bone attachments. None of these cases had severe atrophy of the abductor muscles, but all had partial fatty infiltration. All hips with this mild lesion had repair of the tendons with #5 Ticron sutures to repair the tendon bundles together, and drill holes through bone to anchor the repair to the greater trochanter. Forty-one hips had severe damage with complete or nearly complete avulsion of the gluteus medius and minimus muscles from their attachments to the greater trochanter. Thirty-five of these hips had partial fatty infiltration of the abductor muscles, but all responded to electrical stimulation. The surface of the greater trochanter was denuded of soft tissue with a rongeur, the muscles were repaired with five-seven #5 Ticron mattress sutures passed through drill holes in the greater trochanter, and a gluteus maximus flap was transferred to the posterior third of the greater trochanter and sutured under the vastus lateralis. Six hips had complete detachment of the gluteus medius and minimus muscles, severe atrophy of the muscles, and poor response of the muscles to electrical stimulation. The gluteus medius and minimus muscles were sutured to the greater trochanter, and gluteus maximus flap was transferred as in the group with functioning gluteus medius and minimus muscles. Postoperatively, patients were instructed to protect the hip for 8 weeks, then abductor exercises were started. The normal hips all had negative Trendelenburg tests at 2 and 5 years postoperative with mild lateral hip pain reported by 11 patients at 2 years, and 12 patients at 5 years. In the group of 54 with mild abductor tendon damage that were treated with simple repair, positive Trendelenburg test was found in 5 hips at 2 years and in 8 hips at 5 years. Lateral hip pain was reported in 7 hips at 2 years, and in 22 at 5 years. In the group of 35 hips with severe avulsion but good muscle tissue, who underwent repair with gluteus maximus flap transfer, all had good abduction against gravity and negative Trendelenburg tests at 2 and 5 years postoperative, and none had lateral hip pain. Of the 6 hips with complete avulsion and poor muscle who underwent abductor muscle repair and gluteus maximus flap transfer, all had weak abduction against gravity, mildly positive Trendelenburg sign, and mild lateral hip pain at 2 and 5 years postoperative. Abductor avulsion is uncommon but not rare, and is detected during THA only by direct examination of the tendon and removal of the trochanteric bursa. Simple repair of mild abductor tendon damage did not prevent progressive
Avulsion of the abductor muscles of the hip may cause severe limp and pain. Limited literature is available on treatment approaches for this problem, and each has shortcomings. This study describes a muscle transfer technique to treat complete irreparable avulsion of the hip abductor muscles and tendons. Ten adult cadaver specimens were dissected to determine nerve and blood supply point of entry in the gluteus maximus and tensor fascia lata (TFL) and evaluate the feasibility and safety of transferring these muscles to substitute for the gluteus medius and minimus. In this technique, the anterior portion of the gluteus maximus and the entire TFL are mobilised and transferred to the greater trochanter such that the muscle fiber direction of the transferred muscles closely matches that of the gluteus medius and minimus. Five patients (five hips) were treated for primary irreparable disruption of the hip abductor muscles using this technique between January 2008 and April 2011. All patients had severe or moderate pain, severe abductor limp, and positive Trendelenburg sign. Patients were evaluated for pain and function at a mean of 28 months (range, 18–60 months) after surgery. All patients could actively abduct 3 months post-operatively. At 1 year post-operatively, three patients had no hip pain, two had mild pain that did not limit their activity, three had no limp, and one had mild limp. One patient fell, fractured his greater trochanter, and has persistent limp and
Revision hip approaches can be divided into posterior, anterior, transgluteal, and transtrochanteric. The approach chosen is dictated by what needs to be exposed and the approaches with which the surgeon is comfortable. The posterior approach remains posterior to the gluteus medius and protects the hip abductors. The disadvantage of a posterior approach is post-operative dislocation. The direct anterior approach is currently enjoying popularity as a primary technique. Surgeons experienced in the primary technique are applying it to revision surgery. The anterior approaches also protect the hip abductors. The disadvantage is poor access to the posterior acetabular column and mobilization of the femur to gain access to the femoral diaphysis. Transgluteal approaches split the gluteus medius typically keeping the anterior portion of the medius intact with the vastus lateralis. Proximal exposure is limited by the superior gluteal nerve, which is 4 cm above the tip of the trochanter. The disadvantage of the transgluteal approach is difficult access to the posterior acetabular column and occasional
Revision hip approaches can be divided into posterior, anterior, transgluteal, and transtrochanteric. The approach chosen is dictated by what needs to be exposed and the approaches with which the surgeon is comfortable. The posterior approach remains posterior to the gluteus medius and protects the hip abductors. The disadvantage of a posterior approach is post-operative dislocation. The direct anterior approach is currently enjoying popularity as a primary technique. Surgeons experienced in the primary technique are applying it to revision surgery. The anterior approaches also protect the hip abductors. The disadvantage is poor access to the posterior acetabular column and mobilisation of the femur to gain access to the femoral diaphysis. Transgluteal approaches split the gluteus medius typically keeping the anterior portion of the medius intact with the vastus lateralis. Proximal exposure is limited by the superior gluteal nerve, which is 4cm above the tip of the trochanter. The disadvantage of the transgluteal approach is difficult access to the posterior acetabular column and occasional
Introduction. Some patients with Cerebral Palsy who had a de-rotation osteotomy performed for correction of excessive anteversion had persistence of internal foot progression even after surgery. Potential causes which have been implicated include: weak hip abductors, spasticity of the anterior fibres of the gluteus medius, hip adductor spasm and persistent femoral anterversion. The aim of this study was to see if there is any relationship between significant
We report the results of six trauma and orthopaedic
projects to Kenya in the last three years. The aims are to deliver both
a trauma service and teaching within two hospitals; one a district
hospital near Mount Kenya in Nanyuki, the other the largest public
hospital in Kenya in Mombasa. The Kenya Orthopaedic Project team
consists of a wide range of multidisciplinary professionals that
allows the experience to be shared across those specialties. A follow-up
clinic is held three months after each mission to review the patients.
To our knowledge there are no reported outcomes in the literature
for similar projects. A total of 211 operations have been performed and 400 patients
seen during the projects. Most cases were fractures of the lower
limb; we have been able to follow up 163 patients (77%) who underwent
surgical treatment. We reflect on the results so far and discuss
potential improvements for future missions.