Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 55 - 55
11 Apr 2023
Raina D Markeviciute V Arvidsson L Törnquist E Stravinskas M Kok J Jacobson I Liu Y Tengattini A Sezgin E Vater C Zwingenberger S Isaksson H Tägil M Tarasevicius S Lidgren L
Full Access

Majority of osteoporosis related fractures are treated surgically using metallic fixation devices. Anchorage of fixation devices is sometimes challenging due to poor osteoporotic bone quality that can lead to failure of the fracture fixation. Using a rat osteoporosis model, we employed neutron tomography and histology to study the biological effects of implant augmentation using an isothermally setting calcium sulphate/hydroxyapatite (CaS/HA) biomaterial with synthetic HA particles as recruiting moiety for systemically administered bisphosphonates. Using an osteoporotic sawbones model, we then provide a standardized method for the delivery of the CaS/HA biomaterial at the bone-implant interface for improved mechanical anchorage of a lag-screw commonly used for hip fracture fixation. As a proof-of-concept, the method was then verified in donated femoral heads and in patients with osteoporosis undergoing hip fracture fixation. We show that placing HA particles around a stainless-steel screw in-vivo, systemically administered bisphosphonates could be targeted towards the implant, yielding significantly higher peri-implant bone formation compared to un-augmented controls. In the sawbones model, CaS/HA based lag-screw augmentation led to significant increase (up to 4 times) in peak extraction force with CaS/HA performing at par with PMMA. Micro-CT imaging of the CaS/HA augmented lag-screws in cadaver femoral heads verified that the entire length of the lag-screw threads and the surrounding bone was covered with the CaS/HA material. X-ray images from fracture fixation surgery indicated that the CaS/HA material could be applied at the lag-screw-bone interface without exerting any additional pressure or risk of venous vascular leakage.: We present a new method for augmentation of lag-screws in fragile bone. It is envisaged that this methodcould potentially reduce the risk of fracture fixation failure especially when HA seeking “bone active” drugs are used systemically


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 57 - 57
14 Nov 2024
Birkholtz F Eken M Boyes A Engelbrecht A
Full Access

Introduction. With advances in artificial intelligence, the use of computer-aided detection and diagnosis in clinical imaging is gaining traction. Typically, very large datasets are required to train machine-learning models, potentially limiting use of this technology when only small datasets are available. This study investigated whether pretraining of fracture detection models on large, existing datasets could improve the performance of the model when locating and classifying wrist fractures in a small X-ray image dataset. This concept is termed “transfer learning”. Method. Firstly, three detection models, namely, the faster region-based convolutional neural network (faster R-CNN), you only look once version eight (YOLOv8), and RetinaNet, were pretrained using the large, freely available dataset, common objects in context (COCO) (330000 images). Secondly, these models were pretrained using an open-source wrist X-ray dataset called “Graz Paediatric Wrist Digital X-rays” (GRAZPEDWRI-DX) on a (1) fracture detection dataset (20327 images) and (2) fracture location and classification dataset (14390 images). An orthopaedic surgeon classified the small available dataset of 776 distal radius X-rays (Arbeidsgmeischaft für Osteosynthesefragen Foundation / Orthopaedic Trauma Association; AO/OTA), on which the models were tested. Result. Detection models without pre-training on the large datasets were the least precise when tested on the small distal radius dataset. The model with the best accuracy to detect and classify wrist fractures was the YOLOv8 model pretrained on the GRAZPEDWRI-DX fracture detection dataset (mean average precision at intersection over union of 50=59.7%). This model showed up to 33.6% improved detection precision compared to the same models with no pre-training. Conclusion. Optimisation of machine-learning models can be challenging when only relatively small datasets are available. The findings of this study support the potential of transfer learning from large datasets to improve model performance in smaller datasets. This is encouraging for wider application of machine-learning technology in medical imaging evaluation, including less common orthopaedic pathologies


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 50 - 50
17 Nov 2023
Williams D Ward M Kelly E Shillabeer D Williams J Javadi A Holsgrove T Meakin J Holt C
Full Access

Abstract. Objectives. Spinal disorders such as back pain incur a substantial societal and economic burden. Unfortunately, there is lack of understanding and treatment of these disorders are further impeded by the inability to assess spinal forces in vivo. The aim of this project is to address this challenge by developing and testing a novel image-driven approach that will assess the forces in an individual's spine in vivo by incorporating information acquired from multimodal imaging (magnetic resonance imaging (MRI) and biplane X-rays) in a subject-specific model. Methods. Magnetic resonance and biplane X-ray imaging are used to capture information about the anatomy, tissues, and motion of an individual's spine as they perform a range of everyday activities. This information is then utilised in a subject-specific computational model based on the finite element method to predict the forces in their spine. The project is also utilising novel machine learning algorithms and in vitro, six-axis mechanical testing on human, porcine and bovine samples to develop and test the modelling methods rigorously. Results & Discussion. MRI sequences have been identified that provide high-quality image data and information on different tissue types which will be used to predict subject-specific disc properties. In-vivo protocols to capture motion analysis, EMG muscle activity, and video X-rays of the spine have been designed with planned data collection of 15 healthy volunteers. Preliminary modelling work has evaluated potential machine learning approaches and quantified the sensitivity of the models developed to material properties. Conclusion. The development and testing of these image-driven subject-specific spine models will provide a new tool for determining forces in the spine. It will also provide new tools for measuring and modelling spine movement and quantifying the properties of the spinal tissues. Acknowledgments. Funding from the EPSRC: EP/V036602/1 (Meakin, Holsgrove & Javadi) and EP/V032275/1 (Holt & Williams). Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 51 - 51
1 Dec 2020
Khan MM Pincher B Pacheco R
Full Access

Aims and objectives. Our aim was to evaluate the indications for patients undergoing magnetic resonance imaging (MRI) of the knee prior to referral to an orthopaedic specialist, and ascertain whether these scans altered initial management. Materials and Method. We retrospectively reviewed all referrals received by a single specialist knee surgeon over a 1-year period. Patient demographics, relevant history, examination findings and past surgical procedures were documented. Patients having undergone MRI prior to referral were identified and indications for the scans recorded. These were reviewed against The NHS guidelines for Primary Care Physicians to identify if the imaging performed was appropriate in each case. Results. A total of 261 patients were referred between 1. st. July 2018 and 30. th. June 2019. 87/261 patients underwent MRI of the knee joint prior to referral. The mean patient age was 53 years with predominance of male patients (52 verses 35 females). 21/87 patients (24%) underwent the appropriate imaging prior to referral with only 13% of patients undergoing x-ray imaging before their MRI. In cases where MRI was not indicated, patients waited an average of 12 weeks between their scan and a referral being sent to the specialist knee surgeon. Conclusion. 76% of patients referred to orthopaedics had inappropriate MRI imaging arranged by their primary care physician. For a single consultant's referrals over 1 year these unnecessary MRI scans cost the NHS £13,200. Closer adherence to the guidelines by primary care physicians would result in a financial saving for the NHS, faster referral times and a more effective use of NHS resources


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 46 - 46
1 Nov 2018
Tuleubayev B Saginova D Arutyunyan M Kerimbekov T Uulu AD
Full Access

Recently in traumatology various methods of impregnation biodegradable implants and allografts with antibiotics are widely used. Among them the soaking, shaking and ionophores are common used. We aimed to choose the optimal method of impregnation with the antibiotic of the head of the femur, taken from patients after arthroplasty. We studied 6 femoral heads after hip replacement. Head №1 the iohexol (Omnipaque) was injected through circular ligament and through the neck of the femur. Head №2 through the circular ligament, head №3 through the neck of the femur, head №4 through the circular ligament and through the neck of the femur, head №5 through 4 pre-drilled channels a brilliant green solution was injected. The head №6 was soaked in a brilliant green solution. Head №1 assessed by radiology. All the heads, treated with brilliant green, were cut in half to assess the degree of impregnation. On the X-ray image of head №1 the contrast agent has spread enough. In osteotomy, the impregnation with brilliant green head №2, №3, №4, №5 was seen in 3–4 mm around the needle passage place. Head №6 the bone was not impregnated. Despite the fact that the radiograph showed a sufficient spread of contrast agent, on the sections of the head, treated with brilliant green, showed the spread of liquid 3–4 mm around the needle passage place. This indicates that the impregnation of large bone is not effective


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 35 - 35
1 Jan 2019
Zaribaf F Gill HR Pegg E
Full Access

Ultra-high molecular weight polyethylene (UHMWPE) is a commonly used as bearing material in joint replacement devices. UHMWPE implants can be hard to see on a standard X-ray because UHMWPE does not readily attenuate X-rays. Radiopaque UHMWPE would enable direct imaging of the bearing both during and after surgery, providing in vivo assessment of bearing position, dislocation or fracture, and potentially a direct measure of wear. The X-ray attenuation of UHMWPE was increased by diffusing an FDA approved contrast agent (Lipiodol) into UHMWPE parts (Zaribaf et al, 2018). The aim of this study was to evaluate the optimal level of radiopacity for a UHMWPE bearing. Samples of un-irradiated medical grade UHMWPE (GUR 1050) were machined into 4mm standard medium Oxford Unicompartmental bearings. Samples were immersed in Lipiodol Ultra Fluid (Guerbert, France) at elevated temperatures (85 °C, 95 °C and 105 °C) for 24 h to achieve three different levels of radiopacity. A phantom set-up was used for X-ray imaging; the phantom contained two perspex rods to represent bone, with the metallic tibial tray and polyethylene bearing fixed to the end of one rod and the metallic femoral component fixed to the other rod. Radiographs of the samples were taken (n=5) with the components positioned in full extension. To ensure consistency, the images of all the samples were taken simultaneously alongside an untreated part. The results of our ongoing study demonstrate that the radiopacity of UHMWPE can be enhanced using Lipiodol and the parts are visible in a clinical radiographs. The identification of the optimal treatment from a clinical perspective is ongoing; we are currently running a survey with clinicians to find the consensus on the optimal radiopacity taking into account the metallic components and alignment. Future work will involve a RSA study to assess the feasibility of measuring wear directly from the bearing


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 39 - 39
1 Jan 2019
Williams D Metcalfe A Madete J Whatling G Kempshall P Forster M Holt C
Full Access

One of the main surgical goals when performing a total knee replacement (TKR) is to ensure the implants are properly aligned and correctly sized; however, understanding the effect of alignment and rotation on the biomechanics of the knee during functional activities is limited. Cardiff University has unique access to a group of local patients who have relatively high frequency of poor alignment, and early failure. This provides a rare insight into how malalignment of TKR's can affect patients from a clinical and biomechanical point of view to determine how to best align a TKR. This study aims to explore relationship clinical surgical measurements of Implant alignment with in-vivo joint kinematics. 28 patient volunteers (with 32 Kinemax (Stryker) TKR's were recruited. Patients undertook single plane video fluoroscopy of the knee during a step-up and step-down task to determine TKR in-vivo kinematics and centre of rotation (COR). Joint Track image registration software (University of Florida, USA) was used to match CAD models of the implant to the x-ray images. Hip-Knee-Ankle (HKA) was measured using long-leg radiographs to determine frontal plane alignment. Posterior tibial slope angle was calculated using radiographs. An independent sample t-test was used to explore differences between neutral (HKA:-2° to 2°), varus (≥2°) and valgus alignment (≤-2°) groups. Other measures were explored across the whole cohort using Pearson's correlations (SPSS V23). There was found to be no statistical difference between groups or correlations for HKA. The exploratory analysis found that tibial slope correlated with Superior/Inferior translation ROM during step up (r=−0.601, p<0.001) and step down (r=−.512, p=0.03) the position of the COR heading towards the lateral (r=−.479, p=0.006) during step down. Initial results suggest no relationship between frontal plane alignment and in-vivo. Exploratory analyses have found other relationships that are worthy of further research and may be important in optimizing function


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 36 - 36
1 May 2017
Islam A Dodia N Obeid E
Full Access

Background. The Targon FN plate is a combination of the sliding hip screw and multiple cancellous screws. It is used in the fixation of intracapsular fractures of the neck of femur. The aim of this prospective audit was to assess clinical and radiological outcomes of Targon FN. Method. All patients who had a Targon FN fixation over a period of 18 months at a district general hospital were included. A pro forma was completed using medical records, including x-ray images. Results. Thirty-five patients were identified. Median (IQR) age was 73 (57–82). Median (IQR) waiting time for surgery was 27 hours (17–51). Median (IQR) operating time was 58 (50–65) minutes. The patients were followed up at 6, 12 18 and 24 months. Three cases of avascular necrosis were reported and two cases of non-union. Seven cases were found where the Targon FN was not used correctly. No cases of implant failure were reported where the Targon FN was used according to manufacture guidelines. Five revision surgeries took place or were being planned for cases of avascular necrosis, non union and symptomatic hardware. One case was identified which would have been better treated with a hemiarthroplasty than Targon FN. Conclusion. We recommend that the Targon FN plate continue to be used in our department. The success rate of the implant could be improved by educational workshops in our department to ensure that all surgeons adhere strictly to the operating technique described by the manufacturer. We recommend continuing careful selection of patients for Targon FN and to continue a follow up to 24 months


Background. Patients presenting to fracture clinic who have had initial management of a fracture performed by Accident and Emergency (A+E) often require further intervention to correct unacceptable position. This usually takes the form of booking a patient for a general anaesthetic to have manipulation under anaesthesia (MUA) or open surgery. Methods. Prospective data collection over a 6-month period. Included subjects were those that had initial management of a fracture performed by A+E, who went on to require re-manipulation in fracture-clinic. Manipulations were performed by trained plaster technicians using entonox analgesia followed by application of moulded cast. Radiographs were reviewed immediately post-manipulation by treating surgeon and patient managed accordingly. A retrospective review of radiograph images was performed by two doctors independently to grade the outcomes following manipulation. Results. 38 patients with 39 fractures included in study. Sites of fracture included 32 distal radius, 2 ankle, 1 spiral distal tibia and fibula, 3 metacarpal and 1 proximal phalanx of finger. 22 patients had anatomical/near-to anatomical reduction at post fracture-clinic manipulation of fracture and was the as well as definitive management (satisfactory outcome). 13 patients had a outcome 2 (minimally displaced but and satisfactory reduction of the fracture) at post fracture-clinic reduction. 12 of these were deemed acceptable went onto outcome 1 for definitive management with 1 going to outcome 2 (requiringed further manipulation). 4 patients had unsatisfactory reduction of fracture outcome 3 at post fracture-clinic reduction and all of these patients went onto outcome 3 (required surgery). Conclusions. This study supports the practice of possible primary reduction and if required, re-manipulation and cast moulding using only entonox analgesia, of selected patient cases fractures by trained plaster technicians. Without this intervention, almost all of these cases will have required an MUA or additionally Kirscher wire or open fixation. There is potential to utilise a plaster technician in A+E, reducing the need for further fracture clinic appointments, being more acceptable to patients and having a resultant cost-saving implication. Level of Evidence. Level 3


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 46 - 46
1 Oct 2016
Nair A Dolan J Tanner KE Pollock PJ Kerr C Oliver FB Watson MJ Jones B Kellett CF
Full Access

Adductor canal blocks offer an alternative to femoral nerve block for postoperative pain relief in knee arthroplasty. They may reduce the risk of quadriceps weakness, allowing earlier mobilisation of patients postoperatively. However, little is known about the effect of a tourniquet on the distribution of local anaesthetic in the limb. Ultrasound-guided adductor canal blocks were performed on both thighs of five human cadavers. Left and right thighs of each cadaver were randomised to tourniquet or no tourniquet for one hour. Iohexol radio-opaque contrast (Omnipaque 350) was substituted for the local anaesthetic for X-Ray imaging. All limbs underwent periodic flexion and extension during this hour to simulate positioning during surgery. The cadavers were refrozen. Fiducial markers were inserted into the frozen tissue. X-rays were obtained in 4 planes (AP, lateral 45° oblique/medial oblique, lateral). University Research Ethics Approval was obtained and cadavers were all pre-consented for research, imaging and photography according to the Anatomy Act (1984). Analysis of radiographs showed contrast distribution in all thighs to be predominantly on the medial aspect of the thighs. The contrast margins were entire and well circumscribed, strongly suggesting it was largely contained within the aponeurosis of the adductor canal. Tourniquets appeared to push the contrast into a narrower and more distal spread along the length of the thigh compared to a more diffuse spread for those without. Proximal spread towards the femoral triangle was reduced in limbs without tourniquets. The results suggest that contrast material may remain within the adductor canal structures during adductor canal blocks. Tourniquets may cause greater distribution of contrast proximally and distally in the thigh, but this does not appear to be clinically significant. Further studies might include radio-stereo photometric analysis using the fiducial markers in the limbs and in vivo studies to show the effect of haemodynamics on distribution


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 69 - 69
1 Jan 2017
Parchi P Andreani L Cutolo F Carbone M Ferrari V Ferrari M Lisanti M
Full Access

Aim of the study was the evaluation of the efficacy of the use of a new wearable AR video see-throught system based on Head Mounted Displays (HMDs) to guide the position of a working cannula into the vertebral body through a transpedicular approach without the use X-Ray images guidance. We describe a head mounted stereoscopic video see-through display that allows the augmentation of video frames acquired by two cameras with the rendering of patient specific 3D models obtained on the basis of pre-operative radiological volumetric images. The system does not employ any external tracker to detect movements of the user or of the patient. User's head movements and the consistent alignment of the virtual patient with the real one, are accomplished through machine vision methods applied on pairs of live images. Our system has been tested on an experimental setup that simulate the reaching of lumbar pedicle as in a vertebral augmentation procedure avoiding the employment of ionizing radiation. Aim of the study is to evaluate the ergonomics and the accurancy of the systems to guide the procedure. We performed 4 test sessions with a total of 32 kirschner wire implanted by a single operator wearing the HMD with the AR guide. The system accurancy was evaluated by a post-operative CT scan. The most ergonomic AR visualization comprise the use of a pair of virtual viewfinders (one at the level of the skin entry point and one at the level of the trocar's bottom) aligned according to the planned direction of the trocar insertion. With such AR guide the surgeon must align the tip of the needle to the center of the first viewfinder placed on the patient's skin. indeed the viewfinder barycenter provides a 2 degrees of freedom (DoFs) positioning guide corresponding to the point of insertion preoperatively planned over the external surface of the model. The second viewfinder is used by the surgeon to rotate and align the trocar according to the planned direction of insertion (2 rotational DOFs). After the first test series a clamping arm has been introduced to maintain the reached trocar's trajectory. The post-operative CT scan was registered to the preoperative one and the trajectories obtained with the AR guide were compared to the planned one. The overal results obtained in the 4 test session show a medium error of 1.18+/−0.16 mm. In the last year there was a growing interest to the use of Augmented Reality systems in which the real scene watched by the surgeon is merged with virtual informations extracted from the patient's medical dataset (medical data, patient anatomy, preoperative plannig). Wearable Augmented Reality (WAR) with the use of HDMs allows the surgeon to have a “natural point of view” of the surgical field and of the patient's anatomy avoiding the problems related to eye-hand coordination. Results of the in vitro tests are encouraging in terms of precision, system usability and ergonomics proving our system to be worthy of more extensive tests


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 106 - 106
1 Jan 2017
Maisani M Bareille R Levesque L Amédée J Mantovani D Chassande O
Full Access

First works focuses on the characterization (physical and biological) of this biomaterial. Current work had studied osteoinductive and osteoconductive capacity of these hydrogels. In vivoresults highlight a significant bone reconstruction two months after implantations on bone lesions in mice. Bone is a dynamic and vascularized tissue that has the ability of naturally healing upon damage. Nevertheless, in the case of critical size defects this potential is impaired. Present approaches mainly consider autografts and allografts, which presents several limitations. Bone Tissue Engineering (BTE) is based on the use of 3D matrices to guide both cellular growth, differentiation to promote bone regeneration. Hence, matrices can contain biological materials such as cells and growth factors. Our project aims to design a hydrogel for BTE, particularly for bone lesion filling. We previously showed that a porous 3D hydrogel, Glycosyl-Nucleoside-Fluorinated (GNF) is: 1) non-cytotoxic to clustered human Adipose Mesenchymal Stem Cells (hASCs), 2) bioinjectable and 3) biodegradable. Therefore, this novel class of hydrogels show promise for the development of therapeutic solutions for BTE [1]. The hypothesis of this research was that improving the capacity to promote the adhesion of cells by adding collagen gel matrices and bone morphogenic protein 2 (BMP-2) to improve the bone regenerative potential of this gel. Collagen is a protein matrix well known for its cytocompatibility [2]. BMP-2, have been shown ability to induce bone formation in combination with an adequate matrix [3]. Thereby, the overall aim of this work was to design, develop and validate a new composite hydrogel for BTE. GNF was prepared as previously described in detail[1], at a concentration of 3% (w/v). Type I-collagen gel was prepared from rat-tail tendons at a concentration of 4 g/L [2]. hASCs were isolated from human adipose tissue in our laboratory. To establish a suitable microenvironment for cell proliferation and differentiation cells were seeded in collagen and then GNF gel was added and the resulting mixture was blended, BMP-2 (InductOs ® Kit) is added to this preparation (5µm BMP-2/ml). Fluorometry was used to follow BMP2 release in vitro andin vivo(NOG mices;n=6), orthotopic calvariumbone critical defect (3.3 mm) has been selected to challenge the bone repair. Adding collagen hydrogel improve cell adhesion, survivals and proliferation rather than simple GNF hydrogel. This novel gel composite has the ability to sustain hASCs adhesion and differentiation towards the osteoblastic lineage (positive ALP cells). Fluorometry showed the ability of our hydrogel to prolong the residence of BMP-2 (in vitro and in vivo) compared to collagen hydrogel sponges. Implantation of hydrogel containing hASC and BMP-2 has shown encouraging results in bone reconstruction: 2 months after implantation of biomaterials a significant bone reconstruction can be observed using X-Ray imaging. Adding collagen to GNF allowed to obtain gels showing satisfactory cell-behaviour. In parallel, the presence of GNF hydrogel helps to improve mechanical properties of the biomaterial (hydrogel stability and controlled release of BMP-2). The first in vivostudies have shown encouraging bone regeneration capacity of these hydrogels. The implantation performed on a larger number of animals and quantitative microCT analysis will enable us to judge the effectiveness of this hydrogel as a new injectable biomaterial for BTE. This work was partially supported by NSERC-Canada, FRQ-NT-Quebec, FRQ-S- Quebec, and CFI-Canada. Mathieu Maisani was awarded of a NSERC CREATE Program in Regenerative Medicine (www.ncprm.ulaval.ca)


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 74 - 74
1 May 2017
ten Broeke R Rudolfina R Geurts J Arts J
Full Access

Background. Implant stability and is an important factor for adequate bone remodelling and both are crucial in the long-term clinical survival of total hip arthroplasty (THA). Assessment of early bone remodelling on X-rays during the first 2 years post-operatively is mandatory when stepwise introduction of a new implant is performed. Regardless of fixation type (cemented or cementless), early acetabular component migration is usually the weakest link in THA, eventually leading to loosening. Over the past years, a shift towards uncemented cup designs has occurred. Besides the established hydroxyapatite (HA) coated uncemented cups which provide ongrowth of bone, new uncemented implant designs stimulating ingrowth of bone have increased in popularity. These cups initiate ingrowth of bone into the implant by their open metallic structure with peripheral pores, to obtain a mechanical interlock with the surrounding bone, thereby stabilising the prosthesis in an early stage after implantation. This retrospective study assessed bone remodelling, osseointegration and occurrence of radiolucency around a new ingrowth philosophy acetabular implant. Methods. In a retrospectively, single centre cohort study all patients whom underwent primary THA with a Tritanium acetabular component in 2011 were included. Bone remodelling, osseointegration and occurrence of radiolucency were determined by two reviewers from X-ray images that were made at 6 weeks, 3–6-12 and 24 months post-operatively. Bone contact % was calculated based on the original Charnley and DeLee zones. According to Charnley and DeLee the outer surface of an acetabular cup is divided into 3 zones (1-2-3). For our analysis the original 3 zones were further divided into 2 producing 6 zones 1A to 3B. Each of these 6 zones were then further divided into 4 equal sections. We attributed 25 points per section in which complete bone contact without lucency was observed. If lucency was observed no points were attributed to the section. A fully osteointegrated cup in all 24 sections could therefore attain 600 points. The total of each section and zone was subsequently tallied and recalculated to produce the percentage of bone contact on a 1–100% score. Results. In 2011 131 patients; 54 male and 76 female with average age of 60.83 (SD 12.42) and 60.57 (SD 12.11) year respectively underwent primary THA at our institution and all where included in our study cohort. Majority of this cohort underwent primary THA due to osteoarthrosis and most patients were classified ASO I (18%) or ASA II (65%). At two year clinical follow-up two revision were performed. One constituted a femur and acetabulum revision due to leg length difference and a snapping hip phenomenon. Complications included 3 dislocations (all treated policlinic), 4 deep infections (all treated with Genta PMMA beads with prosthesis in situ and healed) and 1 removal of hematoma. In another patient the femoral component was revised due to a peri-prosthetic fracture. Mean bone contact % values for all Charnley and DeLee zones combined were calculated and improved from 68,18% (SD 22,36) at 6 weeks to 73,61% SD (16,26) at 3 months to 84,21% (SD 19,02) at 6 months to 86,90% (SD 16,0) at 1 year to 92,19% (SD 12,74) at two year follow-up. When analysing the bone contact % per individual zone a remarkable difference was found for zones 2A-B. In contrast to zone 1A-B and 3A-B the initial bone contact % was clearly although not significantly lower until two year follow-up. Conclusions. In this study, the bone apposition around Tritanium actebular component was retrospectively assessed until two year clinical. Our results show excellent bone apposition that continues to improve over time (at least until two year clinical follow-up) suggesting that the open trabecular Ti structure of the Tritanium has a positive effect on cup osseointegration. However, some recent reports have shown the development of reactive lines around cups with porous/trabecular metal surfaces, of which the meaning is still unclear. Our analysis indicated that especially acetabular zone 2A-B according to Charnley&DeLee needs time to establish a direct contact of the implant surface and the surrounding bone tissues. Perhaps this might be explained by reaming technique (underreaming vs line to line reaming) resulting in suboptimal seating of the cup. Therefore, careful follow-up of this new implant technology will remain necessary and continued in this study. We aim to improve cohort size and establish results at longer follow-up times. Furthermore we aim to correlate these results to RSA component migration analysis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 13 - 13
1 May 2012
Gray H Zavatsky A Gill H
Full Access

Iterative finite element (FE) models are used to simulate bone remodelling that takes place due to the surgical insertion of an implant or to simulate fracture healing. In such simulations element material properties are calculated after each iteration of solving the model. New material properties are calculated based on the results derived by the model during the last iteration. Once the FE model has gone through a number of such iterations it is often necessary to assess the remodelling that has taken place. The method widely used to do this is to analyse element Young's modulus plots taken at particular sections through the model. Although this method gives relevant information which is often helpful when comparing different implants, the information is rather abstract and is difficult to compare with patient data which is commonly in the form of radiographs. The authors suggest a simple technique that can be used to generate synthetic radiograph images from FE models. These images allow relatively easy comparisons of FE derived information with patient radiographs. Another clear advantage of this technique is that clinicians (who are familiar with reading radiographs) are able to understand and interpret them readily. To demonstrate the technique a three dimensional (3D) model of the proximal tibia implanted with an Oxford Unicompartmental Knee replacement was created based on CT data obtained from a cadaveric tibia. The model's initial element material properties were calculated from the same CT data set using a relationship between radiographic density and Young's modulus. The model was subject to simplified loading conditions and solved over 365 iterations representing one year of in vivo remodelling. After each iteration the element material properties were recalculated based on previously published remodelling rules. Next, synthetic anteroposterior radiographs were generated by back calculating radiographic densities from material properties of the model after 365 iterations. A 3D rectangular grid of sampling points which encapsulated the model was defined. For each of the elements in the FE model radiographic densities were back calculated based on the same relationships used to calculate material properties from radiographic densities. The radiographic density of each element was assigned to all the sampling grid points within the element. The 3D array of radiographic densities was summed in the anteroposterior direction thereby creating a 2D array of radiographic densities. This 2D array was plotted giving an image analogous to anteroposterior patient radiographs. Similar to a patient radiograph denser material appeared lighter while less dense material appeared darker. The resulting synthetic radiographs were compared to patient radiographs and found to have similar patterns of dark and light regions. The synthetic radiographs were relatively easy to produce based on the FE model results, represented FE results in a manner easily comparable to patient radiographs, and represented FE results in a clinician friendly manner


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 97 - 97
1 May 2017
Elbashir M Angadi D Latimer M
Full Access

Background. The pattern of appearance of secondary ossification centers in the elbow has been based on historical studies and is popularly referred to with the mnemonic CRITOL. However the six secondary ossification centers can be variable in their presentation and pose a challenge in assessment of children with elbow injuries. Furthermore limited studies available in the current literature have reported an aberration to the sequence of appearance especially with the ossification centers of trochlea and olecranon. Aims. The aim of the study was to evaluate the relative sequence of appearance of secondary ossification centers for the trochlea and olecranon. Methods. Children between 8 and 10 years of age who had radiographs of elbow following trivial trauma between July 2013 and Feb 2015 were identified using the hospital PACS database. Cases with radiographic markers of significant trauma ie. fat pad sign, displaced fracture were excluded. Anteroposterior and lateral views of elbow were reviewed for the presence of the six ossification centers. Results. A total of 114 radiographs were reviewed of which 51 were boys and 63 were girls with a mean age of 9.03 years (±0.59). 60 radiographs were of right elbow and 54 were of the left elbow. The capitulum, radial head and medial epicondyle ossification centers were present in all patients. Both trochlea and olecranon ossification centers were noted in 51/114 (44.7%) children. 12/114 (10.5%) of the children were noted to have trochlea ossification center with no olecranon ossification center. Of these 12 children 7 were boys and 5 were girls. On the other hand 19/114 (16.7%) of the children had an olecranon ossification center but without a trochlea ossification center. Amongst these 7 were boys and 12 were girls. Discussion and Conclusions. The results of this limited cross sectional study demonstrate that the CRITOL sequence may not followed in 16.7% of cases and more so in girls. Historical studies were based on conventional radiographs. However the current digital radiographs with image enhancement tools help in accurate identification of relatively small ossification centers which may not be apparent on conventional radiographs. The current study has helped to quantify the violators to CRITOL sequence. Level of Evidence. Level III (Cross-sectional study among non-consecutive patients)


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 30 - 30
1 Mar 2013
Qureshi A Ahmed I Han N Parsons A Pearson R Scotchford C Rudd C Scammell B
Full Access

Background. Bioresorbable materials offer the potential of developing fracture fixation plates with similar properties to bone thereby minimising the “stress shielding” associated with metal plates and obviating the need for implant removal. Phosphate glass fibre reinforced (PGF)-polylactic acid (PLA) composites are bioresorbable and have demonstrated sufficient retention of mechanical properties to enable load bearing applications. Aim. To determine the potential in vivo “stress shielding” effects of a novel PGF reinforced PLA composite plate in an animal model. Methods. Twenty five NZW rabbits underwent application of the composite plate to the intact right tibia. They were divided into 5 groups corresponding to the time points from surgery to sacrifice −2, 6, 12, 26 and 52 weeks. Outcomes included radiographs, NanoCT imaging, histological assessment and mechanical testing of the retrieved plated tibia and opposite control tibia. Results. Plate integrity was retained up to 26 weeks on radiographs and scanning electron microscopy (SEM). The mechanical properties of the plated bones were equivalent or greater than the control bones at each time point although the relative improvement in mechanical properties diminished with time. Nano CT imaging and SEM revealed bone remodelling with cortical thinning beneath the composite plate which progressed as the duration of implantation increased. Discussion. The bone-composite plate construct retained its mechanical properties compared to the control bone despite thinning of the cortex beneath the plate. More importantly, this work suggests that fracture fixation systems with equivalent mechanical properties to bone may still induce a “stress shielding” response